Генетика человека
Генетика человека как наука
Практически все науки, созданные человеком, преследуют единую цель – удовлетворение познавательных интересов человека и применение полученных знания на практике для достижения человеком определенных целей. Не является исключением и генетика. Задолго до появления генетики человечество стремилось разгадать тайну наследственности внешних и внутренних признаков человеческого организма, бороться с «родовыми» заболеваниями, преследовавшими целые династии.
С оформлением генетики как самостоятельной отрасли биологии, начали развиваться различные направления этой молодой науки. Ученые изучали микроорганизмы, грибы, растения, животных. Отдельное направление генетики изучало человека.
Определение 1
Генетика человека – это отдельный раздел генетической науки, который изучает особенности проявления наследственности и изменчивости у человека, наследственные заболевания, генетическую структуру популяций человека.
Эта отрасль дает теоретическое обоснование многим отраслям современной медицины. Кроме медицины, генетика человека тесно связана с антропологией и эволюционной теорией, психологией и социологией.
Готовые работы на аналогичную тему
Особенности методов генетики человека
Так как человек – существо биосоциальное, то не все методы, применяемые для исследования природных явлений, могут быть использованы для изучения человека. Некоторые из методов просто неприемлемы по этическим и гуманным соображениям.
Так, например, нельзя осуществлять направленное скрещивание или экспериментировать с мутационным процессом у человека (хотя, в годы второй мировой войны в гитлеровских концлагерях эсэсовские «ученые» проводили бесчеловечные опыты над заключенными). Кроме того, у человека имеются свои биологические особенности, осложняющие процесс изучения тех или иных явлений. Из-за позднего полового созревания и малочисленного потомства очень сложно вести элементарный статистический анализ. Поэтому при выборе доступных методов исследования ученые обязаны учитывать особенности и сложности человека как генетического объекта.
Генеалогический метод
Одним из классических методов генетики, широко применяемом в генетике человека, является генеалогический метод. Его суть состоит в изучении родословных (генеалогических древ) семей. Особое внимание ученые обращают на изучение и анализ распределения аномальных признаков в семьях, обладающих этим признаком (талант к чему-либо или характерный внешний признак, или наследственное заболевание). Обязательно учитывается и степень родства с носителем данного признака.
Замечание 1
На сегодняшний день этот метод позволил доказать, что большое количество признаков у людей наследуется в полном соответствии с законами Менделя. Доказано, также, что некоторые признаки сцеплены с полом и локализованы в $X$-хромосоме.
Близнецовый метод
Еще один эффективный метод исследования – близнецовый метод. Он состоит в изучении однояйцевых близнецов. Однояйцевые близнецы развиваются из одной яйцеклетки и имеют идентичный генотип. Разнояйцевые близнецы отличаются по генотипу, поскольку разные яйцеклетки оплодотворяются разными сперматозоидами. Поэтому их черты менее сходные, чем у однояйцевых.
Этот метод позволяет судить о взаимоотношениях генотипа и условий среды обитания на развитие человека, о вероятности проявления признаков некоторых заболеваний, передающихся по наследству.
Популяционно-статистический метод
Популяционно-статистический метод позволяет изучать частоты встречаемости генов, определяющих проявление тех или иных наследственных заболеваний и нормальных признаков. Особое внимание уделяется изучению замкнутых, изолированных популяций людей (горные аулы и кишлаки, поселения в труднодоступных джунглях и других местах, поселения религиозных общин). Повышение степени кровного родства приводит к переходу рецессивных признаков в гомозиготное состояние и проявление их в фенотипе.
Дерматоглифический метод
Специфическим методом генетики человека является дерматоглифический метод. Он основан на изучении наследственно обусловленных рисунков на кончиках пальцев, ладоней и подошв человека. Эти рисунки уникальные и обусловлены наследственностью. Их формирование происходит еще во внутриутробном периоде развития человеческого организма. В отличии от хиромантии, генетика не предсказывает будущее по линиям руки, а изучает особенности проявления унаследованных черт в различных условиях среды обитания человека и характера его деятельности.
Генетика и ее методология, подготовка к ЕГЭ по биологии
Предмет генетики
Генетика (греч. γενητως — порождающий, происходящий от кого-то) — наука о наследственности и изменчивости. Это определение
отлично соответствует афоризму А.П. Чехова «Краткость — сестра таланта». В словах наследственность и изменчивость скрыта
вся сущность генетики, к изучению которой мы приступаем.
Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих
особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному
распределению генетического материала.
Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей.
Вследствие этого формируется материал для главного направленного фактора эволюции — естественного отбора, который
отбирает наиболее приспособленных особей.
Мы с вами истинное чудо генетики 🙂 Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них.
Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая
чудо вновь и вновь.
Ген и генетический код
Ген — участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация
в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.
В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК.
Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта — ведь ДНК везде
одинакова!
Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только
с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.
Способ кодирования последовательности аминокислот в белке с помощью генов — универсальный способ для всех живых организмов,
доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:
- Триплетность
- Непрерывность
- Неперекрываемость
- Специфичность (однозначность)
- Избыточность (вырожденность)
- Колинеарность (лат. con — вместе и linea — линия)
- Однонаправленность
Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются
нонсенс кодонами (стоп-кодонами)
Информация считывается непрерывно — внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы
нецелесообразно разделять его на части. Стоп-кодоны — «знаки препинания» — есть между генами, которые кодируют разные белки.
Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного
триплета.
Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.
Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)
Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.
Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе
трансляции.
Аллельные гены
Аллельные гены (греч. allélon — взаимно) — гены, занимающие одинаковое положение в локусах гомологичных хромосом и
отвечающие за развитие альтернативных признаков. Такими признаками может являться карий и голубой цвет глаз, праворукость
и леворукость, вьющиеся и прямые волосы.
Локусом (лат. locus — место) — в генетике обозначают положение определенного гена в хромосоме.
Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами — AA, Aa, aa. Писать
только один ген было бы ошибкой.
Гены бывают рецессивные (подавляемые) и доминантные (подавляющие альтернативный ген). Доминантным геном (А) является карий цвет,
рецессивным (а) — голубой цвет глаз. Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А — доминантный ген подавляет
a — рецессивный ген.
Генотип организма (совокупность генов — AA, Aa, aa) может быть описан терминами:
- Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) — AA, aa
- Гетерозиготный (в случае, когда один ген доминантный, а другой — рецессивный) — Аа
Понять, какой признак являются подавляемым — рецессивным, а какой подавляющим — доминантным, можно в результате основного метода
генетики — гибридологического, то есть путем скрещивания особей и изучения их потомства.
Гаметы
Гамета (греч. gamos — женщина в браке) — половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая
половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом — n, при слиянии двух гамет набор восстанавливается до диплоидного — 2n.
Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи
необходимо знать и понимать следующие правила:
- В гаметах представлены все гены, составляющие гаплоидный набор хромосом — n
- В каждую гамету попадает только одна хромосома из гомологичной пары
- Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i — число генов в
гетерозиготном состоянии в генотипе - Одну гомологичную хромосому ребенок всегда получает от отца, другую — от матери
- Организмы, у которых проявляется рецессивный признак — гомозиготны (аа). У гетерозигот всегда проявляется доминантный
ген (гетерозигота — Aa)
К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитывать исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.
Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa.
При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет — это ошибка.
К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет
«A» и «a», так как они различаются между собой.
Гибридологический метод
Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов
генетики, предложенный самим Грегором Менделем — гибридологический.
Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания.
С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных
генов.
Цитогенетический метод
С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить
карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии
наследственных заболеваний.
Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера,
Клайнфельтера).
Генеалогический метод (греч. γενεαλογία — родословная)
Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных.
Человек, с которого начинают составление родословной — пробанд. В результате изучения родословной врач-генетик
может предположить вероятность возникновения тех или иных заболеваний.
По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы
научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?»,
«сцеплен с полом или не сцеплен?»
На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного)
рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в
следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:
- Заболевание проявляется только у гомозигот
- Родители клинически здоровы
- Если больны оба родителя, то все их дети будут больны
- В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
- Оба пола поражаются одинаково
Сейчас это может показаться сложным, но не волнуйтесь — решая генетические задачи вы сами «дойдете» до этих правил,
и через некоторое время они будут казаться вам очевидными.
Близнецовый метод
Применение близнецового метода в генетике — вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи «один в один»:
такими являются однояйцевые близнецы, их появление подчинено случайности.
Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа — совокупности внешних и
внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности
строения внутренних органов и т.д.
Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство — шизофрения
— развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается
сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Что определяют наши гены. Генетика человека
Фильм «Обыкновенное чудо»
Я страшный человек — коварен, капризен, злопамятен. И самое обидное, не я в этом виноват! Предки виноваты — вели себя как свиньи последние, а я теперь расхлебывай их прошлое. А сам я по натуре добряк и умница.
скачать видео
Фантазировать о своих возможностях, не зная ограничений – безответственно. Увлекаться психологией, забывая про физиологию и генетику – неверно. Высшее растет через низшее, и азы генетики должен знать любой психолог. Неправда, что новорожденный – это только тельце с набором генов: новорожденный – это уже член общества, это чей-то ребенок, его уже любит его мама и готов воспитывать его отец. Никто пока не знает, есть ли с рождения у ребенка хотя бы зачатки разума, воли и духа, но уверенно можно сказать одно: у ребенка с рождения есть его гены, которые определяют его жизнь и развитие. Генетика человека – это врожденные особенности человека, передаваемые через гены.
Гены – это участки ДНК, несущие информацию о наследственности. Врожденные особенности человека, передаваемые через гены — генетика человека. Генотип – это набор генов организма, фенотип – это внешние проявления этих генов, набор признаков организма. Фенотип – это все то, что можно увидеть, посчитать, измерить, описать, просто глядя на человека (голубые глаза, светлые волосы, низкий рост, темперамент – холерик и так далее).
У мужчин более изменчив генотип, у женщин — фенотип.
По мнению некоторых генетиков, гены передают программы в большей степени не следующему поколению, а через поколение, то есть ваши гены будут не у ваших детей, а у ваших внуков. А у ваших детей — гены ваших родителей.
Что определяют наши гены? Гены определяют наши физические и психические особенности, гены задают, что мы, как люди, не можем летать и дышать под водой, но можем обучаться человеческой речи и письму. Мальчики легче ориентируются в предметном мире, девочки — в мире отношений. Кто-то родился с абсолютным музыкальным слухом, кто-то — с абсолютной памятью, а кто-то с самыми средними способностями.
Способности ребенка зависят и от возраста родителей. Гениальные дети чаще всего рождаются в паре, где матери 27 лет, отцу 38. Однако самые здоровые дети появляются у более молодых родителей, когда матери от 18 до 27. Ваш выбор? Гены определяют многие наши черты характера и склонности. У мальчиков — это склонность заниматься машинками, а не куклами. Гены влияют на наши индивидуальные предрасположенности, в том числе к болезням, к асоциальному поведению, к таланту, к физической или интеллектуальной деятельности и т.д. Можно ли утверждать, что у всех людей с детства есть природная склонность к добру, что человек по природе своей – добр? Это один из центральных вопросов, по которому не утихают споры среди психологов.
При этом важно всегда помнить: склонность подталкивает человека, но не определяет его поведения. За склонность отвечают гены, за поведение — человек. Да и склонностями своими можно работать: какие-то развивать, делать любимыми, а какие-то оставлять вне своего внимания, гасить их, забывать…
Гены определяют время, когда какой-то наш талант или склонность проявится или нет.
Гены определяют время, когда какой-то наш талант может проявиться. Попал в удачное время, когда гены готовы — сделал чудо. Промахнулся по времени — пролетаешь мимо. Сегодня восприимчивость ребенка к развивающим процессам высокая – он «белый лист», «впитывает только хорошее» и «очень талантлив», а спустя год: «ничего не понимает», «что в лоб, что по лбу» и «яблочко от яблони недалеко падает» (с грустью).
Гены определяют, когда у нас просыпается половое влечение, и когда оно засыпает. Гены влияют и на счастье, и на черты характера.
Проанализировав данные по более чем 900 парам близнецов, психологи Эдинбургского университета обнаружили доказательства существования генов, определяющих черты характера, склонность к счастью, способность легче переносить стресс.
Агрессивность и доброжелательность, гениальность и слабоумие, аутизм или экстраверсия — передаются детям от родителей как задатки. Все это изменяемо воспитанием, но в разной степени, поскольку и задатки бывают разной силы. Обучаем ребенок или нет, это также связано с его генетикой. И тут же заметим: здоровые дети вполне обучаемы. Человеческая генетика делает человека исключительно обучаемым существом!
Гены — носители наших возможностей, в том числе возможностей к изменению и совершенствованию. Интересно, что у мужчин и женщин в этом отношении разные возможности. Мужчины чаще, чем женщины, рождаются с теми или иными отклонениями: среди мужчин больше тех, кто будет очень высоким и очень низким, очень умным и наоборот, талантливым и идиотом. Похоже, что на мужчинах природа — экспериментирует… При этом, если уж мужчина таким родился, ему изменить это в течение жизни очень сложно. Мужчина привязан к своему генотипу, его фенотип (внешнее проявление генотипа) — меняется слабо.
Родился длинным — длинным и останешься. Коротышка может с помощью спорта подняться на 1-2 сантиметра, но не более.
У женщин ситуация другая. Женщины рождаются более в среднем одинаковыми, среди них биологических, генетических отклонений меньше. Чаще среднего роста, среднего интеллекта, средней порядочности, идиоток и отстоя среди женщин меньше, чем среди мужчин. Но и выдающихся в интеллектуальном или нравственном отношении — аналогично. Похоже, что эволюция, проводя на мужчинах эксперименты, на женщинах решает не рисковать и вкладывает в женщин все самое надежное. При этом индивидуальная (фенотипическая) изменчивость у женщин выше: если девочка родилась маленькой относительно других, она сумеет вытянуться на 2-5 см (больше, чем может парень)… Женщины имеют большую свободу от своего генотипа, имеют большую возможность, чем мужчины, изменять себя.
Гены дарят нам наши возможности, и гены же наши возможности ограничивают.
Из пшеничного зерна вырастает гордый пшеничный колос, а из саженца яблони — красивая ветвистая яблоня. Нашу суть, наши склонности и возможность реализовать себя дают нам наши гены. С другой стороны, из пшеничного зерна вырастет только колос пшеницы, из саженца яблони вырастает только яблоня, а сколько лягушке ни надуваться, в быка она не раздуется. У нее даже лопнуть от натуги сил не хватит.
Человек — часть природы, и все вышесказанное справедливо и для него. Гены предопределяют границы наших возможностей, в том числе наши возможности менять себя, стремиться к росту и развитию. Если вам с генами повезло, вы сумели воспринять влияния ваших родителей и педагогов, выросли развитым, порядочным и талантливым человеком. Спасибо родителям! Если вам с генами повезло меньше, и вы (вдруг!) родились дауном, то в самом хорошем окружении из вас вырастет только воспитанный даун. В этом смысле наши гены — это наша судьба, и свои гены, свои возможности расти и меняться — мы напрямую изменить не можем.
Много ли в нас генетически заложенного — вопрос очень спорный (взаимодействие наследственности и среды изучает психогенетика). Скорее правда, что чем более человек удаляется от животного мира, тем меньше в нем врожденного и больше приобретенного. Пока нужно признать, что в большинстве из нас врожденного очень много. В среднем, по мнению генетиков, гены определяют поведение человека на 40%.
Если вы любите своего ребенка и учитесь быть хорошим родителем и воспитателем, гарантированы ли вам успехи? Нет. Каким бы талантливым педагогом вы ни были, у вас может родиться «кислый» или трудный ребенок, с которым реально мало что можно сделать. Если вы сделаете лучшее из возможного, то сможете уменьшить неприятности людям от этого ребенка, но успеете ли вы из него вырастить достойного человека за два десятка лет его воспитания? Так получается не всегда. Человек появляется на свет со своим характером, и он бывает очень разным. Некоторые дети рождаются сразу «домашними» — характер легкий, податливый, со взрослыми дружат и их слушают. У других характер самого начала трудный: им тяжело самим, тяжело с ними.
Что это значит? Только то, что стоит приглядываться к тому или той, с кем вы собираетесь создавать семью. Обращать внимание на родственников, учитывая не только то, что с ними придется встречаться, а и то, что тот или иной характер может оказаться и у вашего ребенка. Хороших вам родственников!
Генетика бывает хорошей или плохой, и это зависит в том числе от нашего образа жизни. В благоприятных условиях и хорошем воспитательном процессе, возможная негативная предрасположенность может не реализоваться, или скорректироваться, «прикрыться» влиянием соседних разбуженных генов, а позитивная предрасположенность, иногда скрытая — проявиться. Иногда человек (ребёнок) просто не знает своих возможностей, и категорично «ставить крест», говорить, что «из этого гадкого утёнка лебедя не вырастет» — опасно.
Другая опасность, другой риск — тратить время и силы на человека, из которого путного все-таки ничего выйти не может. Говорят, что каждый может стать гением, и теоретически это так. Однако практически одному для этого достаточно тридцать лет, а другому нужно лет триста, и вкладываться в таких проблемных людей — нерентабельно. Спортивные тренеры утверждают, что именно врожденный талант, а не методика тренировок, — самый важный фактор формирования будущего чемпиона. То, что человеку дается от природы — база, на которой можно строить все остальное.
Если девушка родилась шатенкой с зелеными глазами и «предрасположенностью» к полноте, то можно, конечно, покрасить волосы и надеть цветные линзы: девушка все равно останется зеленоглазой шатенкой. А вот воплотится ли ее «предрасположенность» в пятьдесятбольшие размеры, носимые всеми ее родственницами, во многом зависит от нее самой. И уж тем более от нее самой зависит, будет ли она к сорока годам, сидя в этом пятьдесятбольшом размере, ругать государство и не сложившуюся жизнь (как это делают все её же родственницы) или найдет себе много других интересных занятий.
Может ли человек менять, когда-то преодолевать, а когда-то улучшить свою генетику? Ответ на этот вопрос не может быть общим, поскольку и это задано индивидуально генетически. В целом правильно говорить, что развитие ребенка определяют склонности плюс воспитание. Однако у одного ребенка с рождения 90% определяется его склонностями и только 10% можно добавить воспитанием (неподатливый ребенок), у другого, податливого — он почти как чистый лист, 10% склонностей и на 90% что вложите воспитанием, то и будет. И то, и другое соотношение — врожденная характеристика ребенка.
Какое соотношение у вас или у вашего ребенка? Понять это можно только опытным путем, начав с ребенком (или с собой) заниматься. Начинайте! Гены задают возможности, от нас зависит, насколько мы эти возможности реализуем. Если у вас хорошая генетика, вы можете сделать ее еще лучшей и передать своим детям как самый дорогой подарок. Наша ДНК запоминает, какое у нас было детство, есть наблюдения, что генетически передаются привычки, навыки, склонности и даже манеры. Если вы выработали у себя воспитанность, красивые манеры, поставили хороший голос, приучили себя к распорядку дня и ответственности, то есть неплохая вероятность, что рано или поздно это войдет в генотип вашей фамилии.
Гены определяют наши задатки, наши возможности и склонности, но не нашу судьбу. Гены определяют стартовую площадку для деятельности — у кого-то она лучше, у кого-то труднее. Но что будет на базе этой площадки сделано — это уже забота не генов, а людей: самого человека и тех, кто с ним рядом.
Думая о генетике, важно помнить, что человек живет и строит себя не в одиночестве. Если полагаться только на собственную генетику, можно остаться дикарем. Нас окружает культура, создававшаяся многими поколениями много сотен лет, вобравшая лучшее из генетики каждого. Нас учат, и мы можем учиться. То, что трудно в себе развить самостоятельно, может помочь развить учитель или тренер: возможно, у него именно к этому генетически заданный потрясающий талант. Люди могут помогать друг другу. Что один не сделает, сделаем вместе!
Генетику можно улучшать — пусть не всегда в своей индивидуальной судьбе, то, определенно, в судьбе своего рода. Удачной вам генетики!
ГЕНЕТИКА ЧЕЛОВЕКА — это… Что такое ГЕНЕТИКА ЧЕЛОВЕКА?
ГЕНЕТИКА ЧЕЛОВЕКА (демографич. аспекты), раздел генетики, изучающий явления наследственности и изменчивости у человека. Материальной основой наследственности у человека, как и у др. организмов, являются гены, расположенные в хромосомах и передающиеся в поколениях с помощью половых клеток. Каждый из генов представлен в организме дважды — один получен от отца, другой — от матери. В зависимости от различия или тождества унаследованных генов человек соотв. гетерозиготен (т.е. отцовский и материнский гены в данной паре не одинаковы) или гомозиготен (отцовский и материнский гены в данной паре одинаковы). Вероятность гомозиготности по совокупности генов из-за большого их числа (по разным оценкам, 105-106) крайне мала. Доля генов в гомозиготном состоянии у человека возрастает, если его родители имеют общих предков, от к-рых унаследовали идентичные гены. Такие случаи, регулируясь в человеческом обществе брачными традициями и законами, встречаются сравнительно редко, и, как правило, индивидуальный набор генов — генотип — формируется сочетанием родительских генов, происходящих из разных частей генофонда — общей совокупности генов популяции. Индивидуальное разнообразие набора генов огромно и образует биол. фундамент уникальности и неповторимости человеческой личности.
Один из важнейших разделов Г. ч.- популяционная Г. ч. В отличие от популяций др. видов популяция человека — объект действия и продукт не только естеств.-историч., но и обществ.-историч. процесса. Воспроиз-во генов человека, будучи, с одной стороны, сугубо биол. процессом, с другой — социально обусловлено и неотделимо от демографич. развития и воспроиз-ва народонаселения. Передача генетич. информации в поколениях, её распределение в пространстве расселения нас., изменение в ходе миграций, переселений, взаимодействий нас. с окружающей средой — все эти движения генетич. материала у человека связаны с демографич. процессами. Т. о., популяц. Г. ч. можно рассматривать как демографич. генетику, т. е. область взаимодействия генетики и демографии, исследующую генетич.
последствия демографич. процессов.
Генофонд популяции, представленный в каждом поколении разнообразными генотипами, не остаётся постоянным во времени, т. к. благодаря дифференциальной рождаемости, смертности и миграции носители генов одного поколения в разной степени передают свои гены новым поколениям. Изменение популяц. генофонда, вызванное неодинаковым участием носителей разных генов в процессе воспроиз-ва, считается в общей теории популяц. генетики осн. проявлением естеств. отбора, к-рый меняет структуру генофонда в сторону большего соответствия условиям среды. Др. факторами, действующими на изменения генофонда в популяциях человека, являются мутации, миграции и дрейф генов. Мерилом биологически нормальной, естеств. скорости изменения генофонда является темп естеств. мутационного процесса. Эффекту мутаций собственных генов генофонда эквивалентен эффект миграций генов из др. популяций с существенно иным генофондом, т. к. при этом также возникают новые, ранее несвойственные популяции генотипы. Др. последствие регулярных миграций генов — стирание генетич. различий между популяциями, потеря ими генетич. своеобразия, возникшего в ходе самостоят, развития и специфич. приспособления к локальным условиям среды. Миграция генов осуществляется через миграцию их носителей. Роль миграции в истории развития народонас. едва ли поддаётся однозначной оценке и трактовке, но нек-рые её генетич. последствия очевидны, ибо значит. часть совр. мирового нас. представлена генетически смешанными популяциями. В несколько ином плане та же проблема возникает в связи с процессом урбанизации, вызывающим отлив нас. из разл. местных популяций и его прилив в центры урбанизации.
Даже в отсутствии мутаций, отбора, миграций генов (что почти невероятно) генофонд популяции всё же сохраняет возможность изменяться. Происходит это в силу т. н. дрейфа генов, или генетико-автоматич. процесса,- такого изменения генетич. структуры популяции, к-рое вызывается случайными причинами, напр. малыми размерами популяции. Дрейф генов наблюдается в численно небольших и преим. эндогамных популяциях — изолятах, где имеет место значит. несоответствие между потенциально всегда большим разнообразием возможных генотипов и малым числом реальных носителей генов. В силу малочисленности популяции в каждом поколении реализуется лишь малая часть возможных генотипов, и формирование генофонда нового поколения приобретает характер случайного выбора ограниченного числа генов из родительского генофонда. Популяц. генетика трактует дрейф генов как процесс, не зависящий от состояния среды. Вместе с тем именно на примере малых замкнутых популяций человека можно увидеть, что числ. популяции определ. образом связана с уровнем обществ.-экон. и культурного развития, а также с характером взаимодействия популяции со средой обитания. Т. о., дрейф генов, зависящий от размера популяции, оказывается зависимым и от состояния обществ. и природной среды.
Различные генетич. процессы, рассмотренные выше порознь, в реальных популяциях представляют взаимосвязанные компоненты единого генетич. процесса.
Осн. источником информации о генетич. процессах в нас. является генетический полиморфизм, т. е. одноврем. присутствие в популяции двух и более форм одного и того же наследств, признака или свойства. Он исследуется с помощью генетич. маркёров — наследств, признаков, свидетельствующих о присутствии в генотипе человека тех или иных генов, обусловливающих эти признаки. Соотв. применяются разнообразные эксперим. методы изучения генетич. маркёров как источников информации о генотипах людей и генофондах популяций. Важную информацию о степени замкнутости и своеобразии генофонда в эндогамных популяциях, об уровне наследств, полиморфизма и т. п. позволяет получить генеалогия популяции, а также архивные и текущие записи актов гражданского состояния. Источником информации в Г. ч. служат и такие сведения о нас., как его численность, брачность, семейная структура, рождаемость, смертность, расселение и пространств, структура, миграции. Гены, носителями к-рых являются совр. поколения, дошли до них из глубокого прошлого, и поэтому Г. ч. использует также данные археологии, этнографии и истории.
Генетические аспекты численности и демографической структуры населения. Нас. мира в целом, как и нас., слагающее отд. этносы, имеет сложную иерархич. популяц. структуру. В основании этой иерархии находятся элементарные популяции — простейшие единицы всей популяц. системы человечества. На нижнем уровне этой системы преобладают популяции сел. типа с числ. от десятков и сотен до тысяч чел. К этому же уровню относят и гор. популяции с числ. от тысяч до миллионов чел. При разл. численности и сел., и гор. популяции однотипны с том отношении, что лишены постоянных внутрипопуляц. барьеров, к-рые расчленяли бы их генофонд на относительно независимые и устойчиво воспроизводящиеся в поколениях части (в больших городах капиталистич. стран в значит. степени сохраняется расчленённость генофонда в силу расовых, нац., кастовых, религ. и др. различий). Число генов к.-л. типа в генофонде элементарной популяции вдвое больше числа составляющих её людей. Однако с формированием генофонда след, поколения связана лишь часть генов, носители к-рых — люди репродуктивного возраста. Из них не все вступают в брак, а из вступивших не все имеют детей или имеют разное их число и, наконец, не все дети доживают до репродуктивного возраста. Это означает, что даже гены, образующие ту часть генофонда, к-рая обеспечивает его воспроиз-во, воспроизводят себя в разном числе копий. Чем меньшая часть генов родительского поколения воспроизвела себя в большем числе копий, тем больше генетич. различия между поколениями популяции. В связи с этим генетически значимой является не общая числ. популяции, а её т. н. генетически эффективная численность — параметр, учитывающий все составляющие процесса воспроиз-ва — неравное соотношение полов, их неравную плодовитость, репродуктивную активность, её продолжительность, различную в разных семьях выживаемость детей.
Отношение генетически эффективной числ. к общей числ. популяции зависит не только от биологических, но и от социальных факторов. В популяциях сел. типа это отношение составляет обычно ок. 1/3. В гор. популяциях под выравнивающим влиянием социальной среды на репродуктивные показатели семей доля генетически эффективной числ. может резко возрастать даже при сокращении воспроиз-ва и общего размера популяции. Размер популяции в свою очередь влияет на скорость генетич. изменений в популяции: чем он численно больше, тем медленнее изменяется генетич. структура популяции. Поэтому там, где нас. состоит из большого числа элементарных популяций, наблюдаются значит. генетич. различия между ними.
Генетические аспекты брачности. Многие моменты матем. моделирования генетич. процессов в популяциях связаны с принципом панмиксни (полной случайности образования брачных пар). В популяциях человека этот принцип реализуется с большими ограничениями. Общество, запрещая или поощряя, в зависимости от традиций и законов, родственные браки, регулирует степень панмиксии и воздействует на генетич. процесс. В разных обществ.-экон. и историко-культурных условиях различна и широта брачного круга, а следовательно, и уровень генетич. разнообразия в нём. Ориентируясь, хотя бы частично, на психофизиологические (темперамент и т. д.), морфологические (тип телосложения, расовые особенности) и др. свойства, прямо или косвенно связанные с генотипом, человек тем самым производит неслучайный выбор из окружающего его разнообразия генотипов. Наибольшая избирательность наблюдается при близкородств. браках — инбридинге. Особенно высока его частота в изолятах, где преобладают внутренние (эндогамные) браки (их частота достигает почти 100% ). В этом случае сама традиция эндогамии, несмотря на запрещение явно родственных браков, неминуемо порождает инбридинг. Чем меньше генетически эффективная числ. изолята, тем с течением времени всё более родственными становятся браки, и всё более увеличивается генетич. однородность популяции. Уровень наследств. полиморфизма в таком изоляте сокращается, и популяция оказывается высокоадаптированной к узкому диапазону условий окружающей среды. Известны случаи, когда популяции, оказавшись на историч. окраинах мира и утратив в условиях изоляции нек-рую долю наследств. полиморфизма (в частности, иммунологического), при контакте с пришлыми группами нас. ценой больших потерь адаптировались к изменившейся эпидемиол. обстановке.
Широта брачного круга может сказываться и на таких признаках потомства, к-рые лишь частично определяются генотипом. С широтой брачного круга, т. е. с уровнем генетич. различий родителей, до определ. степени связаны показатели физич. развития детей, выносливости, устойчивости к стрессу, трудоспособности. В уровне этих различий, судя по влиянию на потомство, существует свой оптимум, означающий существование оптимума и в размерах круга брачных связей.
Генетические аспекты семейной структуры. Главный метод изучения закономерностей наследств. передачи признаков у человека — анализ распределения признаков у членов семьи в зависимости от степени их родства. Если признак, будучи генетич. маркёром, не влияет на подбор супружеских пар, то доля родительских пар с определ. сочетанием маркирующих признаков обусловлена только частотой, с к-рой распространены в нас. гены, кодирующие эти признаки. Напр., группы крови человека, обозначаемые символами О(I), А(II), В(III) и AB(IV), кодируются тремя аллельными генами О, А и В. Распространение этих трёх генов в мировом нас. изучено особенно хорошо в силу их значимости для службы переливания крови. Семейная структура нас. локальной ли популяции, народа, страны или мира в целом в отношении признака групп крови представлена 16 генетически разл. типами супружеских пар. Частота каждого из этих типов всецело зависит от частоты трёх аллельных генов А, В и О. Так, зная, что в Зап. Европе эти гены представлены в генофонде в соотношении 26% (А), 6% (В), 68% (О), а в Юж. и Вост. Азии в соотношении 20% (А), 20% (В) и 60% (О), можно заранее предсказать, что семья, где, напр., мать группы крови О(I) и отец группы крови А (II), в Зап. Европе составляют ок. 20%, а в Юж. и Вост. Азии — ок. 10% всех супружеских пар. В семьях с супружескими парами этого типа часты случаи патологии повторных; и многократных беременностей и родов на почве иммуногенетич, несовместимости родителей. Социально значимые аспекты одного этого факта проявления генетич. закономерностей в семейной структуре нас. очевидны, Т. о., существует связь между частотой, с к-рой гены представлены в генофонде нас., частотами генотипов людей и частотами генетически различных типов семей, передающих в следующее поколение определённую долю генов генофонда. Величина помех в передаче генетической информации в поколениях обратно пропорциональна числу детей в семьях и прямо пропорциональна степени различий семей по числу детей.
Родство в семье имеет определ. генетич. меру, определяющую долю общих генов у любых двух членов семьи, связанных общностью (даже отдалённой) происхождения. Наиболее распространённые типы родства могут быть выражены долей генов, унаследованных от общего предка. Это имеет значение в вопросах регулирования браков, в случае наследств, заболеваний и при медико-генетич. консультировании относительно риска заболевания, отмеченного в семье.
Генетические аспекты рождаемости. Индивидуальное развитие (онтогенез) человека находится под генетическим контролем, в наибольшей мере проявляющимся в ранние фазы — от образования зиготы (оплодотворённой яйцеклетки) до рождения и раннего детства. Такой контроль наиболее ясно выступает в явлении генетич. определения (детерминации) пола системой двух т. н, половых хромосом (одной, полученной от отца, другой — от матери). Генетич. детерминация пола происходит в момент слияния родительских половых клеток и зависит от того, в каком сочетании половые хромосомы родителей оказались в новой зиготе. Генетически контролируется также взаимодействие плода с материнским организмом. По оценкам, не менее 10% всех зачатий оканчивается спонтанными абортами, обусловленными генетич. несовместимостью матери и плода. Менее выраженная генетич. несовместимость сказывается в осложнённом протекании беременности и родов. Наиболее известный пример проявления генетич. факторов в беременности и рождаемости — резус-несовместимость матери и плода, а значит и супругов, возникающая в силу полиморфизма генов, контролирующих резус-группы крови. Этот вид генетич. несовместимости особенно част в нас. Европы, Неравная плодовитость разл. генотипов способна в ряду поколений изменить генофонд путём преимуществ, распространения одних и убыли др. генов.
Генетические аспекты смертности. Одни гены, унаследованные человеком от родителей, функционируют на протяжении всей жизни, другие — лишь на определ. этапе онтогенеза, третьи, присутствуя в генотипе, могут так и не проявиться в фенотипе. Хотя все гены не меняются в течение жизни организма, в разных возрастных группах нас. наблюдаются различия в частоте разных генотипов. Причина этого в неодинаковой выживаемости индивидуальных генотипов. Она наиболее очевидна, когда организм оказывается носителем т н. летальных генов, приводящих к его гибели. В др. случаях определ. генотипич. комбинации в определ. среде в той или иной мере снижают жизнеспособность и тем самым влияют на индивидуальную продолжительность жизни. В популяциях, существующих в стабильной среде, повышенная смертность отд. генотипов компенсируется их повышенной плодовитостью и, т. о., не затрагивает генетич. различий между поколениями. В иных условиях изменение частоты генотипов в популяции отражает направление её генетич. адаптации к изменениям окружающей среды. В человеческом обществе, прилагающем максимум усилий в борьбе со смертностью, генетич. причины смертности в наибольшей мере сказываются на нач. этапах онтогенеза.
Причиной неодинаковой выживаемости генотипов является также разл. степень устойчивости н подверженности людей заболеваниям, хотя преимущество одних генотипов перед другими в этом отношении не является ни абсолютным, ни постоянным. Неравная жизнеспособность разных генотипов — один из механизмов, поддерживающий наследств, полиморфизм в популяциях человека, причём величина различий в степени жизнеспособности обычно порядка одного — неск. %. В нек-рых случаях (при появлении в среде патогенного фактора) соотношение в выживаемости генотипов достигает десятков %. Наиболее известный пример такого рода связан с серповидно-клеточной анемией — болезнью, первопричина к-рой в мутации одного из генов, кодирующих синтез гемоглобина. Если у к.-л. индивида в обеих гомологичных хромосомах присутствует мутантный ген (HbS), то такой индивид страдает тяжёлой анемией и, как правило, не доживает до зрелости. Т. о., при генотипе HbS HbS весь гемоглобин принадлежит к аномальному типу и разница в выживании такого генотипа по сравнению с нормальным НbA НbA составляет практически 100%. Однако в условиях тропич. Африки и субтропич. Средиземноморья разница в выживании меньше 100% в силу низкой устойчивости нормального генотипа НbA НbA к поражению малярийным плазмодием, для развития к-рого аномальный гемоглобин представляет менее подходящую среду, чем нормальный. Наиболее жизнестойки индивиды с генотипом HbA HbS, у к-рых ген НbA обеспечивает образование норм, гемоглобина, а ген HbS защищает от поражения малярийным плазмодием.
Генетические аспекты воспроизводства населения. В понятиях Г. ч. воспроиз-во нас. есть воспроиз-во генов человека в ходе смены поколений. Генетически ключевыми единицами в воспроиз-ве нас. являются элементарные популяции, дифференц. рост к-рых в ходе воспроиз-ва ведёт к неодинаковому распространению в нас. генов из того или иного генофонда. Поскольку элементарные популяции человека не существуют вне этносов, в их неравном воспроиз-ве отражено неравное же воспроиз-во этнич. генофондов, необратимо меняющее генетич. свойства нас., что сказывается не только в постепенном изменении физич. облика поколений, но и в нарушении устойчивости к патогенным факторам среды. Генетически значимая единица времени в воспроиз-ве — поколение. В воспроиз-ве генов нового поколения участвуют обычно 2 из 3-4 одновременно сосуществующих поколений, что сокращает возможность резких изменений в генетич. структуре нового поколения и обеспечивает большую генетич. преемственность между поколениями. Охрана генетич. механизмов воспроиз-ва — ключевое условие поддержания нормального физич. состояния поколений. Посредством воспроиз-ва нас. из отдалённого прошлого в настоящее и будущее передаются древние гены, обусловливающие физич. и психич. единство и целостность человечества во всём его многообразии. Воспроизводством могуг быть подхвачены и новые гены, возникающие в результате мутаций. Систематический контроль за частотой генных мутаций — один им методов оценки генетического сосюя-ния среды и нормального хода воспроизводства.
Генетические аспекты миграции и расселения населения. Миграция нас. приводит к миграции генов человека. Миграция генов в популяцию, изменяя генофонд, формируя новые генотипы, меняя установившиеся в поколениях соотношения приспособлеyнностей генотипов, усиливая дифференц. плодовитость и выживаемость, выступает как фактор, воздействующий на течение генетич. процесса в популяции. Различают интенсивность и генетич. эффективность миграции. При одинаковой интенсивности генетич. эффективность миграции тем больше, чем больше генетич. своеобразие популяций, обменивающихся генами, а генетич. своеобразие тем больше, чем больше размерностей у пространства, в к-ром происходит миграция. Социальная природа человека способствует увеличению числа размерностей миграц. пространства св. двух-трёх, свойственных популяциям др., организмов, однако она же создаёт условия и стимулы к преодолению этого пространства, разделяющего популяции. Негритянское гетто Нью-Йорка, азиат. кварталы Сан-Франциско, Ист-Энд и Уэст-Энд Лондона, Замоскворечье и Белый город дореволюц. Москвы — всё это не столько территориально, сколько социально разобщённые пространства, в к-рых происходят миграции генов, часто однонаправленные (напр., от белых американцев к чёрным, но почти никогда — обратно). Преодоление такого пространства оказывается часто более трудным, чем преодоление геогр. расстояний. Когда миграция перестаёт зависеть от любого рода расстояний между популяциями, её влияние, нивелирующее генетич разнообразие популяций, становится максимальным. В популяциях, генетич. развитие в к-рых протекает по стационарному типу, миграция выступает в качестве фактора, регулирующего уровень генетич. разнообразия, необходимый для поддержания адаптац. пластичности нас. в изменяющейся окружающей среде. Этот уровень оказывается единым для коренного нас. разных континентов и указывает на то, что в ходе истории был выработан оптимальный режим для всех генетич. процессов в нас. Такой режим обеспечивает распределение всего эволю ционно накопленного генетич. разнообразия нас. на внутрипопуляц. и межпопуляц. компоненты примерно в соотношении 90% а 10%. Такое же соотношение обнаружено в разл. популяциях животных и растений, что подчёркивает его уникальную эволюц. важность для выживания. Соотношение внутри- и меж-популяциопного генетич. разнообразия легко вычисляется из демографич. данных о миграции и числ. нас Поэтому эти данные могут служить для генетич. оптимизации миграции нас. и демографич. процессов в целом.
В череде поколений относительно изолированного автохтонного развития генофонд каждой популяции и каждой группы мирового нас. приобретает отличит, черты. Так сложились, напр., существенно разные генофонды нас. на терр. СССР к 3. и В. от Урала, проявляющиеся даже в антропологич. типах. Вместе с тем генофонд коренного нас. обширного р-на между Волгой и Обью являет промежуточные черты, сложившиеся в результате длившегося тысячелетиями просачивания и миграций генов между европ. и азиат. частями общего генофонда древнего нас. нашей страны. В эпоху Великого переселения народов миграция масс нас. центр.-азиат, и юж.-сиб. происхождения привела к широкому распространению генов из азиат. генофонда среди нас. Европ. части СССР и Европы в целом. Последствия этих миграц. процессов древности до сих пор отражены в геногеографии нас. Сев. Евразии. Считается, что вызванная этими миграциями перестройка генофонда нас. Европы сопровождалась изменением адаптац. свойств генотипов людей. Это проявилось, в частности, в распространении в нас. Европы резус-несовместимости матери и плода, к-рая не встречается в Азии и очень редка на крайнем 3. Европы у басков. Одно лишь это ‘эхо’ древних демографич. процессов, нарушивших естеств. ход и направление генетич. развития нас. Европы, требует сегодня особых профилактич. мероприятий по охране материнства и детства. В геногеографии мирового нас. отражены и многие др. события мировой демографич. истории.
Обращённая в будущее, Г. ч. даёт ключ к пониманию и оценке возможных отдалённых генетич. последствий совр. демографич. процессов.
Ниль Дж., Шэлл У., Наследственность человека, пер. с англ, М. 1958; Штерн К, Основы генетики человека, пер. с англ., М. 1965; Маккьюсик В., Генетика человека, пер. с англ., М. 1967; Бочков Н. П, Генетика человека, М. 1978; Л и Ч., Введение в популяц. генетику, пер. с англ., М. 1978; Беляев Д. К., Совр. наука и проблемы исследования человека, ‘Вопросы философии’, 1981, № 3; Сavа11i -Sforza L. L., Воrimer W. F., The genetics of human populations, S. F., 1977.
Ю.Г. Рычков.
Демографический энциклопедический словарь. — М.: Советская энциклопедия.
Главный редактор Д.И. Валентей.
1985.
Генетика человека — это… Что такое Генетика человека?
отрасль генетики, тесно связанная с антропологией и медициной. Г. ч. условно подразделяют на антропогенетику, изучающую наследственность и изменчивость нормальных признаков человеческого организма, и генетику медицинскую (См. Генетика медицинская), которая изучает его наследственную патологию (болезни, дефекты, уродства и др.). Г. ч. связана также с эволюционной теорией, т.к. исследует конкретные механизмы эволюции человека и его место в природе, с психологией, философией, социологией. Из направлений Г. ч. наиболее интенсивно развиваются цитогенетика, биохимическая генетика, иммуногенетика, генетика высшей нервной деятельности, физиологическая генетика.
В Г. ч. вместо классической гибридологического анализа (См. Гибридологический анализ) применяют генеалогический метод, который состоит в анализе распределения в семьях (точнее, в родословных) лиц, обладающих данным признаком (или аномалией) и не обладающих им, что раскрывает тип наследования, частоту и интенсивность проявления признака и т.д. При анализе семейных данных получают также цифры эмпирического риска, т. е. вероятность обладания признаком в зависимости от степени родства с его носителем. Генеалогическим методом уже показано, что более 1800 морфологических, биохимических и др. признаков человека наследуется по законам Менделя (см. Генетика). Например, тёмная окраска кожи и волос доминирует над светлой; пониженная активность или отсутствие некоторых ферментов определяется рецессивными генами, а рост, вес, уровень интеллекта и ряд др. признаков — «полимерными» генами, т. е. системами из многих генов. Многих признаки и болезни человека, наследующиеся сцепленно с полом, обусловлены генами, локализованными в Х- или Y-xpomocome.
Таких генов известно около 120. К ним относятся гены гемофилии А и В, недостаточности фермента глюкозо-6-фосфатдегидрогеназы, цветовой слепоты и др. Др. метод Г. ч. — близнецовый метод (см. Близнецы). Однояйцевые близнецы (ОБ) развиваются из одной яйцеклетки, оплодотворённой одним спермием; поэтому набор генов (Генотип) у ОБ идентичен. Разнояйцевые близнецы (РБ) развиваются из двух и более яйцеклеток, оплодотворённых разными спермиями; поэтому их генотипы различаются так же, как у братьев и сестёр (сибсов). Сравнение внутрипарных различий между ОБ и РБ позволяет судить об относительном значении наследственности и среды в определении свойств человеческого организма. В близнецовых исследованиях особенно важен показатель конкордантности, выражающий (в %) вероятность обладания данным признаком одним из членов пары ОБ или РБ, если его имеет другой член пары. Если признак детерминирован преимущественно наследственными факторами, то процент конкордантности намного выше у ОБ, чем у РБ. Например, конкордантность по группам крови (См. Группы крови), которые детерминированы только генетически, у ОБ равна 100%. При шизофрении конкордантность у ОБ достигает 67%, в то время как у РБ — 12,1%; при врождённом слабоумии (олигофрении) — 94,5% и 42,6% соответственно. Подобные сравнения проведены в отношении ряда заболеваний. Т. о., исследования близнецов показывают, что вклад наследственности и среды в развитие самых разнообразных признаков различен и признаки развиваются в результате взаимодействия генотипа и внешней среды. Одни признаки обусловлены преимущественно генотипом, при формировании др. признаков генотип выступает в качестве предрасполагающего фактора (или фактора, лимитирующего норму реакции организма на действия внешней среды).
Геном человека включает несколько миллионов генов, способных к тому же по-разному влиять на развитие признаков. В результате мутаций и перекомбинации генов возникает присущее человеку разнообразие по самым разным признакам. Гены человека мутируют каждый с частотой от 1 на 100000 до 1 на 100000000 гамет на поколение. Распространение мутаций (См. Мутации) среди больших групп населения изучает популяционная Г. ч., позволяющая составить карты распространения генов, определяющих развитие нормальных признаков и наследственных болезней. Особый интерес для популяционной Г. ч. представляют изоляты — группы населения, в которых по каким-либо причинам (географическим, экономическим, социальным, религиозным и др.) браки заключаются чаще между членами группы. Это приводит к повышению частоты кровного родства вступающих в брак, а значит, и вероятности того, что рецессивные гены перейдут в гомозиготное состояние и проявятся, что особенно заметно при малочисленности изолята.
Исследования в области Г. ч. продемонстрировали наличие естественного отбора в человеческих популяциях. Однако отбор у человека приобретает специфические черты: он интенсивно действует только на эмбриональной стадии (т. н. самопроизвольные аборты — отражение такого отбора). Отбор в человеческом обществе осуществляется посредством дифференциальной брачности и плодовитости, т. е. в результате взаимодействия социальных и биологических факторов. Мутационный процесс и отбор обусловливают огромное разнообразие (полиморфизм) по ряду признаков, присущее человеку, что делает его с биологической точки зрения необычайно пластичным и приспособленным видом.
Широкое использование в Г. ч. цитологических методов способствовало развитию цитогенетики (См. Цитогенетика), где основной объект исследования — Хромосомы, т. е. структуры клеточного ядра, в которых локализованы гены. Установлено (1946), что хромосомный набор в клетках тела человека (соматических) состоит из 46 хромосом, причём женский пол определяется наличием двух Х-хромосом, а мужской — Х-хромосомы и Y-xpomocomы. В зрелых половых клетках находится половинное (гаплоидное) число хромосом. Митоз, Мейоз и Оплодотворение поддерживают преемственность и постоянство хромосомного набора как в ряду клеточных поколений, так и в поколениях организмов. В результате нарушений указанных процессов могут возникать аномалии хромосомного набора с изменением числа и структуры хромосом, что приводит к возникновению т. н. хромосомных болезней, которые нередко выражаются в слабоумии, развитии тяжёлых врождённых уродств, аномалий половой дифференцировки или обусловливают самопроизвольные аборты.
Успехи в развитии Г. ч. сделали возможными предупреждение и лечение наследственных заболеваний (См. Наследственные заболевания). Один из эффективных методов их предупреждения — медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической Г. ч. раскрыли первопричину (молекулярный механизм) многих наследственно обусловленных дефектов, аномалий обмена веществ, что способствовало разработке методов экспресс-диагностики, позволяющих быстро и рано выявлять больных, и лечения многих прежде неизлечимых наследственных болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вследствие генетического дефекта, или в составлении специальных диет, из которых устранены вещества, оказывающие токсическое действие на организм в результате наследственно обусловленной неспособности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического. вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану Генофонда человечества, осуществляются через систему медико-генетических консультаций (См. Медико-генетическая консультация). Основная цель медико-генетические консультирования — информировать заинтересованных лиц о вероятности риска появления в потомстве больных. К медико-генетическим мероприятиям относится также пропаганда генетических знаний среди населения, т.к. это способствует более ответственному подходу к деторождению. Медико-генетическая консультация воздерживается от мер принудительного или поощрительного характера в вопросах деторождения или вступления в брак, принимая на себя лишь функцию информации. Большое значение имеет система мер, направленных на создание наилучших условий для проявления положительных наследственных задатков и предотвращение вредных воздействий среды на наследственность человека.
Г. ч. представляет собой естественнонаучную основу борьбы с Расизмом, убедительно показывая, что Расы — это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Г. ч. показывает, что все расы равноценны (но не одинаковы) с биологической точки зрения и обладают равными возможностями для развития, определяемого не генетическими, а социально-историческими условиями. Констатация биологических наследственных различий между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас (см. Геноцид, Сегрегация).
Лит.: Ниль Дж. и Шэлл У. Наследственность человека, пер с англ., М, 1958; Канаев И. И., Близнецы, М. — Л., 1959; Штерн К., Основы генетики человека, пер. с англ., М., 1965; Маккьюсик В., Генетика человека, пер. с англ., М., 1967; Биология человека, пер. с англ., М. 1968: Эфроимсон В. П., Введение в медицинскую генетику, 2 изд., М., 1968: Основы цитогенетики человека, [М., 1969]; Li Ching-chun, Human genetics, N. Y., 1961.
К. Н. Гринберг, А. А. Прокофьева-Бельговская.
понятие, основы, методы изучения :: SYL.ru
Генетика человека – наука, объединяющая в себе генетику и медицину. Она посвящена закономерностям наследования, изменения, эволюции человека. Данная наука рассматривает как индивидуумов, состояние которых полностью соответствует норме, так и имеющих различные индивидуальные признаки физиологии, психологии, доставшиеся с рождения, а также патологические состояния. Генетика рассматривает и поведенческие аспекты. Основная задача ученых – определить, что формируется под влиянием среды, а что представляет собой проявления генотипа.
Общее представление
Генетика человека основана на общих закономерностях – таковые универсальны, их можно применять к самым разным видам и особям, и человек не является исключением. В настоящее время выявлено более 3 000 признаков, присущих человеку. Они затрагивают морфологию, биохимию, физиологию. 120 из них имеют связь с половой принадлежностью. Ученые смогли выявить и исследовать 23 типа генетического сцепления. Удалось составить карту хромосом, на которой зафиксированы многие гены.
Особенного внимания заслуживают исследования, проведенные в рамках уточнения генетики человека, посвященные малочисленным популяциям, то есть таким социумам, в которых не более полутора тысяч человек. Ученые установили, что для подобной группы людей частота заключения браков внутри превышает 90 %, следовательно, всего лишь за один век все участники становятся друг другу троюродными родственниками. Исследования показали, что в таких условиях повышается риск рецессивных мутаций. Порядка восьми процентов из них летальны, некоторые связаны со строением глаз или скелета. Мутации зачастую наблюдаются уже на этапе формирования плода, что приводит к его преждевременной гибели – еще до родов или сразу после появления на свет.
Особенности и цифры
Исследуя генетику человека, удалось выявить, что гаплоидный набор представляет собой комбинацию генов в количестве не менее 100000, но у некоторых это число достигает миллиона. Один геном – источник мутаций от одной до десятка. Рост вероятности мутаций на 0,001 % для конкретного индивидуума не значит практически ничего, но при оценке здоровья популяции картина меняется – количество больных измеряется сотнями и тысячами. Анализируя полученную информацию, ученые смогли оценить, насколько важно мутагенное влияние мира вокруг нас. Именно исследуя его в масштабах популяции, можно осознать величину проблемы.
Изучая геном человека в генетике, удалось установить, что человеку присущи некоторые специфические особенности, из-за которых научный прогресс замедляется. В частности, кариотип обладает огромным количеством хромосом, кроме того, в браке обычно рождается мало детей. А во время беременности преимущественно женщина вынашивает только одного ребенка. Исключения возможны, но встречаются редко. Сложность исследования генетики человека связана с продолжительностью взросления и медленной сменой поколений, а также невозможностью сформировать брачную базу, организовать подопытное скрещивание, применять искусственные технологии для активизации мутаций.
Исследование генетики человека – это не только вынужденная борьба со сложностями и проблемами, но и ряд специфических достоинств. Для человека свойственны мутации, в настоящее время их разнообразие только растет. Кроме того, подробно изучены физиология, анатомия вида. Популяция в целом многочисленная, а значит, ученые могут подобрать среди существующих такие брачные схемы, которые максимально соответствуют целям проводимой научной работы.
Не стоять на месте
Задачи генетики человека – изучить, как происходит наследование, в каких формах проявляются генетические признаки у различных особей. В настоящее время ученые точно знают, что от человека к человеку набор признаков меняется достаточно существенно. Это объясняется актуальностью всех типов наследования: по доминанте, рецессивному гену, аутосомно, кодоминантно, в сцеплении с половой хромосомой. Чтобы добиться максимальной точности исследований, необходимо использовать специфические методы – таковые разработаны специально для изучения человека. Не останавливается работа над новыми методами и способами, которые позволят получить больше информации по этой теме.
Вот уже не первое десятилетие ученые не только лишь собирают новые сведения. В генетике человека используют аналитические подходы, предполагающие анализ уже известных данных с учетом новой полученной информации. Такой непрекращающийся аналитический процесс позволяет расширять каталог человеческих признаков, передающихся между поколениями.
Человек и наука
Изучение генетики человека предполагает исследование механизмов наследования и особенностей изменчивости, присущей человеку как виду. Альтернативный термин, которым обозначают науку – антропогенетика. Наука посвящена различиям и общностям людей, объясняемым наследственным фактором. В настоящее время принято в отдельную категорию выносить медицинскую генетику. Эта область посвящена передающимся по наследству болезням, методам их лечения и предупреждения. Актуальность исследований тесно связана с большой наработанной базой информации по этому вопросу. Удалось получить довольно четкие сведения о морфологии и физиологии, биохимии человека. Вся эта информация актуальна при изучении генетической специфики представителей популяции.
Особенности изучения наследственности, генетика человека – наука, тесно связанная с особенностями социума, этики, биологии человека. При этом учитывают, что человек имеет возможность мыслить абстрактно, воспринимать данные. Эти черты считаются неоспоримыми преимуществами, которые не присущи иным объектам, исследуемым генетикой.
Исследования: как организованы?
В генетике человека используют методы: цитогенетика, статистика, исследование популяций, онтогенетика, генеалогия, моделирование. Распространен близнецовый подход к изучению человека. Интересный и дающий немало полезной информации способ – дерматоглифика. В генетике человека используют метод гибридизации, в качестве материала для работы применяя соматические клетки. Актуальны также подходы, позволяющие работать на уровне молекул.
Кроме основных используют вспомогательные методики – они предназначены для получения дополнительной информации. Таковые предполагают применение методов микробиологии, биохимии, иммунологии и других смежных дисциплин.
Генеалогия
Этот метод генетики человека основан на исследовании признаков, свойств, передающихся от человека к человеку по наследству. Для изучения необходимо иметь доступ к родословной индивидуума. Впервые такой подход разработан Гальтоном, а для упрощения его применения впоследствии Юст предложил применять условную символику. Генеалогия предполагает формирование родословной и последующий анализ информации.
В рамках такого метода генетики человека необходимо сперва собрать исчерпывающе данные о семье. Далее информацию фиксируют графически, применяя стандартную символику. В рамках аналитического исследования собранной базы данных оценивают, можно ли конкретный признак назвать семейным, а также определяют, по какому механизму он передается. Ученые исследуют, каковы генотипы близких родственников, вычисляют риски появления анализируемого признака в будущих поколениях. Для разных механизмов наследования свойственны индивидуальные особенности, и их черты видны при анализе родословной.
О деталях
Для аналитической работы в этом методе изучения генетики человека необходимо сперва сформировать представление о правилах моногенной передачи свойств по наследству. Менделирующие признаки, исследуемые таким образом, дискретны, детерминированы, расщепляемы. Для оценки дискретности необходимо проанализировать морфологию, физиологию, биохимию, иммунологию, клинические критерии.
Особенно подробную информацию о систематизации признаков можно найти в работах Кьюсика, опубликовавшего каталог менделирующих человеческих признаков. Генеалогия как способ исследования сравнима с гибридологическим методом, а отличия объясняются социальными особенностями и человеческой биологией. В настоящее время такой подход широко применяется в исследованиях мутаций, наследования, сцепленного с полом, а также в рамках медицинского генетического консультирования.
Близнецовый способ
Такой метод изучения генетики человека предполагает наличие пар близнецов. Объекты исследуются, ученые выявляют, каковы сходства между ними, в чем заключаются различия. Близнецами считают только таких детей, которые были выношены и одновременно появились на свет у одной матери. Различают моно- и дизиготные формы. В первом случае исходный материал – одна зигота, при этом генотипы совпадают, пол – тоже. При двух зиготах генотипы близнецов отличны, а пол может совпадать или нет.
Когда для изучения генетики человека используют метод близнецов, сперва выявляют зиготность полисимптомным подходом. Оценивают людей на сходство по признакам, для которых установлено наследование, а влияние среды на них минимально. Когда удается определить точно зиготность, производят сопоставление индивидуумов по конкретному признаку.
Конкордантная пара выявляется, если некоторый признак присутствует у обоих близнецов. При его отсутствии у одного из близнецов говорят о дискордантной паре. Если для изучения генетики человека используют метод близнецов, учитывают, что полученная информация наиболее точно позволяет оценить, какова роль наследования, насколько сильно влияет среда на коррекцию определенного признака. Ученые могут установить, какие признаки передаются по наследству, почему гены отличаются по пенетрантности. В рамках изучения можно оценить, насколько эффективно влияют на особь внешние факторы – от медикаментозных до подходов к воспитанию.
Цитогенетика
Медицинская генетика человека предполагает изучение клеточных структур под микроскопом. В рамках такого исследования внимание уделяется хромосомам. Основная задача специалиста – выявить половой хроматин, провести кариотипирование. Этот процесс необходим, чтобы выявить метафазные хромосомы.
Кариотипом называется диплоидный хромосомный набор, свойственный конкретному виду. Идиограмма – кариотип, зафиксированный в форме диаграммы. Кариотипирование эффективно проводить, если есть лимфоциты особи. Сперва извлекают определенное число способных к делению клеток, получают метафазные пластинки, гипотонический раствор. Систематизация производится одним из двух методов – Парижский либо Денверский.
Денверский вариант предполагает учитывать форму, размер хромосомы, а в работе применяют метод сплошного окрашивания. Существует семь категорий хромосом. Сложность применения подхода в том, что непросто идентифицировать внутри группы отдельные хромосомы.
Парижский метод классификации предполагает окрашивание метафазных хромосом. Каждая из них отличается уникальным рисунком, а диски позволяют провести четкую дифференциацию.
Пренатальная диагностика
Тесно связаны между собой генетика и здоровье человека. Чтобы предупредить рождение страдающего патологическими отклонениями ребенка, применяется пренатальная диагностика. Эта мера считается первичным способом предупреждения заболеваний, передающихся по наследству. Подходов к диагностике известно несколько, выбор в пользу конкретного зависит от специфики семьи и состояния будущей матери.
Непрямой метод исследования генетики человека с основами медицинской генетики предполагает изучение беременных для определения групп риска. Кровь проверяют на альфа-фетопротеин, выявляют параметры ХГЧ, эстриола. Известно, к примеру, что болезнь Дауна нередко наблюдается при повышенном ХГЧ и пониженном эстриоле. Из показателей альфа-фетопротеина можно заключить, насколько высока вероятность патологий нервной трубки, кожных покровов, риски хромосомных заболеваний.
Альтернативный вариант
В рамках основ генетики человека были разработаны прямые подходы к пренатальной диагностике. Таковыми бывают инвазивные и не предполагающие хирургических операций. Неинвазивные – изучение состояния плода с помощью ультразвука. Так можно определить многоплодную беременность, некоторые заболевания и дефекты.
К прямым инвазивным способам относятся хорионбиопсия, плацентобиопсия, амниоцентез, кордоцентез, фетоскопия. Для изучения состояния могут взять образцы кожных покровов плода. Материалы и образцы, полученные для последующей работы, изучают посредством подходов цитогенетики, биохимии, проверяют молекулярный состав и генетические особенности. Полученные выводы используют, консультируя будущих родителей по вопросам наследственности. Генетика человека на этапе дородовой диагностики позволяет выявить риск хромосомных заболеваний и молекулярных отклонений. Кроме того, именно эти методы применяются, чтобы выявить пол будущего ребенка и оценить вероятность пороков развития плода.
Моделирование и генетика
Если генеалогический метод изучения генетики человека позволяет оценить вероятность наследования признаков исходя из наблюдения их у предыдущих поколений, то моделирование – это такой подход, в рамках которого наследственная изменчивость используется для формирования модели объекта. Применяют законы Вавилова, указывающие, что близкие генетически виды, роды имеют подобные ряды изменчивости, передающейся по наследству. Филогенетически близкие индивидуумы дают однозначный ответ на внешние факторы, в том числе провоцирующие мутации.
Прибегая к мутантным линиям, свойственным животным, можно сформировать модели передачи по наследству ряда болезней, свойственных и животным, и человеку. Ученые получают новые методы исследования путей формирования заболеваний, методов их передачи по наследству. В настоящее время появляются новые походы к диагностированию, основанные на достижениях генетики. Данные, получаемые при изучении животных, к человеку применяются после внесения определенных поправок.
Биохимия и статистика
Онтогенетический метод, актуальный для исследования генетики человека, предполагает изучение с применением подходов биохимии для выявления проблем метаболизма и сбоев, индивидуальных для конкретного объекта, если таковые объясняются мутацией. В организме объекта можно наблюдать промежуточные продукты обменных реакций, и их выявление в органических жидкостях получило широкое применение в подходах к диагностике патологических состояний.
Статистика и исследование популяций – это такой подход в современной генетике, который предполагает изучение генетического популяционного состава. Собрав достаточно объемную базу данных, можно оценить, насколько высок шанс появления особи, имеющей заданный фенотип, в изучаемой группе людей. Можно вычислить частоту генных аллелей, генотипов.
Еще один подход, применимый в наши дни – молекулярная генетика. Это та самая генная инженерия, о которой слышали многие, хотя далеко не всякий человек представляет себе, в чем заключается суть работы ученых. Инженерия заключается в выделении генов и создании их клонов, формировании рекомбинантных молекул и помещении их в живую клетку. Матрицы, полученные при синтезировании новых нуклеиновых кислотных цепей, используются для репликации. Молекулярная генетика активно использует подход секвенирования и некоторые другие высокотехнологичные способы.
Генетика и особенности человека
Наследственность обеспечивается наличием генов, чьи носители – хромосомы. Объект получает набор генов от матери, отца. Между поколениями передача реализована через половые клетки. В организме ген представлен дважды, переданный матерью и отцом. Гены могут быть тождественными, могут разниться. В первом случае говорят о гомозиготности, во втором – гетерозиготности. Вероятность первого варианта исключительно низка, поскольку генов слишком много. При наличии общей линии предков шанс гомозиготности выше, поскольку отец и мать передают ребенку идентичные гены. На практике такое встречается нечасто в силу института брачных отношений и действующих законов. Филологический фундамент уникальности личности, ее неповторимости объясняется разнообразием генетического набора в каждом конкретном случае.
Популяционная человеческая генетика – один из важнейших разделов науки. Человеческая популяция существенно отличается от прочих видов, так как это продукт истории, естественного отбора, развития общества. Генетическое воспроизводство – это и биологический процесс, и социальный, связанный с демографией и неотделимый от него и воспроизводства населения. Передача данных между поколениями и распределение генетических наборов, миграции и взаимные связи со средой, окружающей человека, обеспечивают движение генетического материала. Можно с уверенностью говорить, что генетика и демография – тесно связанные между собой аспекты; популяционная генетика фактически представляет собой демографическую, а ученые, занимающиеся ею, изучают результаты процессов, свойственных демографии.
Нюансы и особенности
Продолжительное исследование генетики и демографических изменений позволяет с уверенностью заключить, что генофонд во времени постоянен, хотя и представлен в каждом конкретном поколении обилием уникальных генотипов. Постоянство обеспечивается рождаемостью и смертностью, перемещением носителей генетической информации. Популяционный генофонд может меняться, поскольку разные носители материала участвуют в процессе воспроизводства с разной степенью активности. Эта особенность – элемент естественного отбора, под влиянием которого структура фонда генов меняется, а общность в большей степени соответствует условиям среды, в которой обитает человек.
В человеческой популяции изменение генофонда в некоторой степени обусловлено мутациями, дрейфом генов и миграцией. Естественные мутации – процесс, скорость которого считается соответствующей нормальному изменению генофонда. Генотипы, формирующиеся в таком процессе, могут быть совершенно новыми, несвойственными ранее сообществу. Регулярная генная миграция сглаживает различия между популяциями, приводит к утере своеобразия, уникальности, объясняющейся локальной спецификой среды.
Генная миграция обусловлена миграцией носителей генетического материала. В настоящее время нет возможности однозначно оценить и описать роль миграции в развитии человечества. Ряд последствий миграции очевиден, основной процент населения мира – продукт смешанной популяции.
Стабильность и прогресс
Шанс на то, что мутаций, миграций, генетического отбора не будет, крайне мал, но даже если представить, что такое возможно, все равно остается возможность изменения генофонда. Это объясняется дрейфом генов, то есть процессом генетической корректировки на популяционном уровне. В частности, к дрейфу может привести малочисленность популяции. Как правило, дрейф свойственен эндогамным социумам, чья отличительная особенность – небольшое количество носителей генотипов, в то время как потенциальное разнообразие наборов признаков исключительно велико.
Малочисленность популяции позволяет в каждом новом поколении реализовываться только небольшому проценту возможных наборов особенностей. Следовательно, генофонд каждого нового поколения появляется как продукт случайного выбора некоторого числа генов, переданных от родителей.
В рамках демографической генетики дрейф генов считается независимым от среды процессом. Исследуя малочисленные человеческие популяции, можно заметить, как уровень развития культуры, общества, экономики влияет на численность населения, как это сказывается на характере взаимодействия с окружающей средой. Дрейф генов, определяемый количеством людей в социуме, зависит от специфики общества и среды, в которой оно существует.
Конспект «Генетика. Наследственность и изменчивость»
Генетика. Наследственность и изменчивость
Раздел ЕГЭ 3.4. Генетика, ее задачи. Наследственность и изменчивость — свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме
Генетика: задачи, методы, понятия, символика
Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость являются фундаментальными свойствами всех живых организмов. Они обеспечивают постоянство и многообразие видов и являются основой эволюции живой природы.
Задачи генетики:
- Исследование механизмов хранения и передачи генетической информации от родительских форм дочерним.
- Изучение механизма реализации генетической информации в процессе онтогенеза под контролем генов и влиянием условий внешней среды.
- Исследование типов, причин и механизмов изменчивости всех живых существ.
- Изучение взаимосвязи процессов наследственности, отбора и изменчивости как движущих факторов эволюции органического мира.
Методы генетики:
- Гибридологический — анализ наследования признаков при скрещиваниях.
- Цитологический — изучение хромосом: подсчёт их числа, описание структуры, поведения при делении клетки, а также связь между изменением структуры хромосом с изменчивостью признаков.
- Биохимические и физико-химические методы — изучение структуры и функции генетического материала и выяснение этапов пути лен — признак» и механизмов взаимодействия различных молекул на атом пути.
- Популяционный — изучение генетической структуры популяций и характера распределения в них генных частот для установления факторов, которые влияют на эти процессы.
- Близнецовый и онтогенетический — анализ и сравнение изменчивости признаков в пределах различных групп близнецов позволяют оценить роль генотипа и среды и наблюдаемой изменчивости.
- Генеалогический (метод анализа родословных) даёт возможность изучить наследование признаков и семьях.
Основные генетические понятия
Ген — структурная и функциональная единица наследственности живых организмов; участок ДНК, задающий последовательность определённого белка либо функциональной РНК.
Аллели — различные формы одного и того же гена, расположенные в одинаковых локусах гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.
Доминирование — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет проявление другого (рецессивного). Доминантный признак проявляется у гетерозигот и доминантных гомозигот.
Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.
Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.
Гомозигота — диплоидный организм, несущий идентичные аллели гена в гомологичных хромосомах.
Гетерозигота — диплоидный организм, копии генов которого в гомологичных хромосомах представлены разными аллелями.
Локус — участок хромосомы, в которой расположен определённый ген.
Гены эукариот состоят из нескольких элементов: регуляторная часть (влияние на активность гена в разные периоды жизни организма) и структурная часть (информация о первичной структуре кодируемого белка). Гены эукариот прерывисты, их ДНК содержит кодирующие участки — экзоны, чередующиеся с некодирующими — нитронами.
Генотип — совокупность генов организма.
Фенотип — совокупность всех внешних и внутренних признаков организма, сформировавшегося на базе генотипа во время индивидуального развития.
Геном — совокупность генов, свойственных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от генотипа, является характеристикой вида, а не особи, поскольку описывает набор генов, свойственных данному виду, а не их аллели, обусловливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.
Генетическая символика
АА ⇒ Доминантная гомозигота (даёт один тип гамет (А))
аа ⇒ Рецессивная гомозигота (один тип гамет (а))
Аа ⇒ Гетерозигота (два типа гамет (А; а))
Р ⇒ Родители
G ⇒ Гаметы
F ⇒ Потомство, число внизу или сразу после буквы указывает на порядковый номер поколения
F1 ⇒ Гибриды первого поколения
F2 ⇒ Гибриды второго поколения
♀ ⇒ Материнский организм
♂ ⇒ Отцовский организм
× ⇒ Значок скрещивания
Наследственность и изменчивость
Наследственность проявляется в способности организма передавать свои признаки и свойства из поколения в поколение. Материальной единицей наследственности являются гены, расположенные у прокариот в нуклеоиде, а у эукариот — в генетическом материале ядра и двумембранных органелл. Совокупность генов организма называют генотипом. Именно он обуславливает развитие большинства его признаков.
Изменчивость — это способность организмов приобретать новые признаки под действием условий среды. Различают генотипическую и фенотипическую изменчивость.
Генотипическая (наследственная) изменчивость затрагивает наследственную информацию организма и проявляется в двух формах: мутационной и комбинативной. В основе комбинативной изменчивости лежат половой процесс, кроссинговер и случайный характер встреч гамет в процессе оплодотворения. Это создаёт огромное разнообразие генотипов. Мутационная связана с возникновением мутаций, которые могут затрагивать как отдельные гены, так и целые хромосомы или даже весь их набор. В зависимости от природы возникновения мутации делят на спонтанные и индуцированные. Мутации делят на соматические и генеративные в зависимости от типа клеток, в которых они возникают. Наблюдения показывают, что многие мутации вредны для организма. Лишь некоторые из них могут оказаться полезными. Вещества и воздействия, приводящие к возникновению мутаций, называются мутагенными факторами, или мутагенами.
Фенотипическая (ненаследственная, или модификационная) изменчивость связана с возникновением модификационных изменений признаков организма, не затрагивающих его геном. Исследования модификационной изменчивости доказывают, что наследуется не сам признак, а способность проявлять этот признак в определённых условиях. Модификационная изменчивость не имеет эволюционного значения, т. к. не связана с образованием новых генов. Так, размеры листьев одного дерева варьируют в довольно широких пределах, хотя генотип их одинаков. Если листья расположить в порядке нарастания или убывания их длины, то получится вариационный ряд изменчивости данного признака.
Хромосомная теория наследственности
Т. Морган с учениками сформулировал хромосомную теорию наследственности в начале XX в. Основные её положения:
- Гены находятся в хромосомах, располагаются в них линейно на определённом расстоянии друг oi друга и не перекрываются.
- Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.
- Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно.
- В потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера.
- Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
- На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.
Это конспект для 10-11 классов по теме «Генетика. Наследственность и изменчивость». Выберите дальнейшее действие:
генетики человека | Описание, хромосомы и наследование
Генетика человека , изучение наследования признаков детьми от родителей. Наследование у людей ничем принципиально не отличается от наследования у других организмов.
Наследственная информация содержится в генах, которые передаются в хромосомах. © Джеймс Каваллини — BSIP / возрастной фотосток
Британская викторина
Викторина по генетике
Какое из этих врожденных заболеваний характеризуется лишней хромосомой?
Изучение наследственности человека занимает центральное место в генетике.Во многом этот интерес проистекает из основного желания знать, кто такие люди и почему они такие, какие они есть. На более практическом уровне понимание наследственности человека имеет решающее значение для прогнозирования, диагностики и лечения заболеваний, имеющих генетический компонент. Стремление определить генетические основы здоровья человека породило область медицинской генетики. В целом, медицина уделяет основное внимание генетике человека, поэтому термины медицинская генетика и генетика человека часто считаются синонимами.
Новая эра в цитогенетике, области исследований, связанных с изучением хромосом, началась в 1956 году с открытия Джо Хин Тьио и Альбертом Леваном, что человеческие соматические клетки содержат 23 пары хромосом. С тех пор эта область исследований развивалась с поразительной быстротой и показала, что хромосомные аберрации человека считаются основными причинами гибели плода и трагических заболеваний человека, многие из которых сопровождаются умственной отсталостью. Поскольку хромосомы можно разграничить только во время митоза, необходимо исследовать материал, в котором много делящихся клеток.Обычно это может быть достигнуто путем культивирования клеток из крови или кожи, поскольку только клетки костного мозга (которые нелегко отбирать, за исключением случаев серьезного заболевания костного мозга, такого как лейкемия) имеют достаточные митозы в отсутствие искусственной культуры. После роста клетки фиксируют на предметных стеклах, а затем окрашивают различными ДНК-специфическими красителями, которые позволяют определять и идентифицировать хромосомы. Денверская система классификации хромосом, установленная в 1959 году, идентифицировала хромосомы по их длине и положению центромер.С тех пор этот метод был улучшен за счет использования специальных методов окрашивания, которые придают уникальные светлые и темные полосы каждой хромосоме. Эти полосы позволяют идентифицировать хромосомные области, которые дублируются, отсутствуют или транспонированы в другие хромосомы.
Были получены микрофотографии, показывающие кариотипы (то есть внешний вид хромосомы) мужчины и женщины. На типичной микрофотографии 46 хромосом человека (диплоидное число) расположены в гомологичные пары, каждая из которых состоит из одного члена, полученного по материнской линии, и одного члена, полученного по отцовской линии.Все хромосомы пронумерованы, за исключением хромосом X и Y, которые являются половыми хромосомами. У людей, как и у всех млекопитающих, нормальная самка имеет две Х-хромосомы, а нормальный самец — одну Х-хромосому и одну Y-хромосому. Таким образом, самка является гомогаметным полом, поскольку все ее гаметы обычно имеют одну Х-хромосому. Самец гетерогаметен, так как производит два типа гамет: один содержит Х-хромосому, а другой — Y-хромосому. Есть убедительные доказательства того, что Y-хромосома у человека, в отличие от хромосомы Drosophila , необходима (но недостаточна) для мужского пола.
хромосома Нити хромосом человека. надил / Pond5.com
Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.
Подпишитесь сегодня
Оплодотворение, определение пола и дифференциация
Человек возникает в результате объединения двух клеток, яйцеклетки матери и спермы отца. Человеческие яйцеклетки практически не видны невооруженным глазом. Обычно они по одной попадают из яичника в яйцеводы (фаллопиевы трубы), по которым они попадают в матку.Оплодотворение, проникновение сперматозоида в яйцеклетку, происходит в яйцеводах. Это главное событие полового размножения, определяющее генетическую конституцию новой особи.
Определение пола человека — это генетический процесс, который в основном зависит от наличия Y-хромосомы в оплодотворенной яйцеклетке. Эта хромосома стимулирует превращение недифференцированной гонады в мужскую (яичко). Гонадное действие Y-хромосомы опосредуется геном, расположенным рядом с центромерой; этот ген кодирует продукцию молекулы клеточной поверхности, называемой антигеном H-Y.Дальнейшее развитие анатомических структур, как внутренних, так и внешних, связанных с мужским полом, контролируется гормонами, вырабатываемыми яичком. Пол человека можно рассматривать в трех разных контекстах: хромосомный пол, гонадный пол и анатомический пол. Несоответствия между ними, особенно двумя последними, приводят к развитию людей с неоднозначным полом, часто называемых гермафродитами. Гомосексуализм не связан с указанными выше факторами, определяющими пол. Интересно, что при отсутствии мужской гонады (яичка) внутренняя и внешняя анатомия пола всегда женская, даже при отсутствии женского яичника.Самка без яичников, конечно, будет бесплодной и не испытает никаких изменений в развитии самки, обычно связанных с половым созреванием. Такая женщина часто страдает синдромом Тернера.
Если X-содержащие и Y-содержащие сперматозоиды производятся в равных количествах, то по простой случайности можно ожидать, что соотношение полов при зачатии (оплодотворении) будет наполовину мальчики и наполовину девочки, или 1: 1. Прямое наблюдение за соотношением полов. среди недавно оплодотворенных человеческих яйцеклеток еще неосуществимо, и данные о соотношении полов обычно собираются во время рождения.Практически во всех человеческих популяциях новорожденных наблюдается небольшой избыток мужчин; на каждые 100 девочек рождается около 106 мальчиков. Однако в течение жизни смертность мужчин несколько выше; это медленно изменяет соотношение полов, пока в возрасте старше 50 лет не станет избыток женщин. Исследования показывают, что эмбрионы мужского пола страдают относительно большей внутриутробной смертностью, поэтому можно ожидать, что соотношение полов при зачатии будет в пользу мужчин даже в большей степени, чем можно предположить при соотношении 106: 100, наблюдаемом при рождении.Твердых объяснений явного превышения мужских представлений не найдено; возможно, что Y-содержащие сперматозоиды лучше выживают в женских половых путях, или они могут быть немного более успешными в достижении яйцеклетки, чтобы оплодотворить ее. В любом случае, половые различия невелики, статистическое ожидание для мальчика (или девочки) при любом единственном рождении все еще близко к одному из двух.
Во время беременности — в период девяти месяцев между оплодотворением и рождением ребенка — происходит ряд замечательных изменений в развитии.В процессе митоза общее количество клеток изменяется с 1 (оплодотворенная яйцеклетка) примерно до 2 × 10 11 . Кроме того, эти клетки дифференцируются на сотни различных типов со специфическими функциями (клетки печени, нервные клетки, мышечные клетки и т. Д.). Множество регуляторных процессов, контролируемых как генетически, так и средой, осуществляют эту дифференциацию. Выяснение точного времени этих процессов остается одной из важнейших задач биологии человека.
.
Программа по генетике человека: краткая история
Всемирная организация здравоохранения выступает за наивысший достижимый уровень здоровья как одно из основных прав каждого человека. С этой целью ВОЗ занимается предоставлением странам международного опыта и технических рекомендаций в их усилиях по инициированию и управлению национальными программами, имеющими большое значение для здравоохранения.
Еще в 1963 г. Комитет экспертов ВОЗ отметил важность генетики в вопросах здоровья: «генетические соображения добавляют новое измерение в работу общественного здравоохранения: забота не только о здоровье и благополучии ныне живущих людей, но и о… поколения еще впереди ».
Первая группа специалистов по генетике человека во Всемирной организации здравоохранения структурно располагалась в Отделении биомедицинских наук. Основное беспокойство в то время было гематологическим. С тех пор эти вопросы остаются важными для ВОЗ. Международные справочные центры ВОЗ были созданы для стандартизации процедур и методологий популяционных исследований. По мере быстрого прогресса в области генетических технологий и исследований генома человека ВОЗ в начале 1980-х годов учредила Программу по наследственным болезням (HDP) для поддержки международной деятельности по развитию медицинских генетических служб.Появление в 1990-х годах международного проекта «Геном человека» добавило новых стимулов и проблем для Программы ВОЗ по наследственным болезням. Постепенно Программа ВОЗ по наследственным болезням расширила свое внимание на генетические подходы к профилактике и борьбе с основными наследственными моногенными заболеваниями (талассемия, муковисцидоз, гемофилия, гемохроматоз), врожденными пороками развития и распространенными заболеваниями с генетической предрасположенностью.
Программа по наследственным заболеваниям успешно поддерживалась и развивалась на протяжении многих лет, и в 1995 г. она была переименована в Программу генетики человека (HGN) как часть Отдела неинфекционных заболеваний и психического здоровья (NMH).Группировка Программы в рамках NMH отразила эволюцию генетических открытий в отношении основных неинфекционных заболеваний, в частности рака, диабета, сердечно-сосудистых заболеваний и астмы, а также озабоченность этическими аспектами предоставления генетических услуг.
В настоящее время HGN в основном специализируется на
- Предоставление странам на международном уровне обновленной информации по медицинской генетике
- Наращивание потенциала и технические консультации по развитию генетических услуг и национальных генетических программ для улучшения услуг генетического здоровья
- Содействие прогрессу и передаче опыта и знаний через глобальную сеть сотрудничающих центров, НПО, региональных и страновых офисов и других партнеров
- Стандартизация генетических технологий для борьбы с болезнями
- Выявление этических, правовых и социальных проблем (ELSI) генетики человека и реагирование на них
- Разработка генетических подходов к борьбе с основными распространенными заболеваниями
Для дальнейшего развития и расширения программных мероприятий Программа генетики человека взаимно сотрудничает с НПО и другими международными организациями.Для облегчения такого сотрудничества были расширены глобальные сети экспертов и центров для решения множества вопросов генетики человека как на международном, так и на национальном уровне. Соответствующие национальные программы с использованием рекомендаций ВОЗ в настоящее время разрабатываются в ряде стран в каждом из шести регионов ВОЗ. Оказание поддержки на местах для предоставления генетических услуг является частью глобальной стратегии ВОЗ по расширению партнерских отношений и сотрудничества, особенно со странами с низким и средним уровнями доходов.
Поскольку технология ДНК развивается быстрее, чем достижения в ее клиническом применении во всем мире, ВОЗ стремится улучшить каналы передачи знаний и технологий. Многие обеспокоенные ученые считают, что достижения в области медицинского применения геномики увеличат разрыв в уровне здоровья между странами. Всемирная организация здравоохранения стремится уменьшить неравенство в отношении здоровья в мире. Он направлен на преодоление разрыва, рекомендуя стратегии реализации генетических услуг. Кроме того, наряду с быстрой эволюцией проекта генома человека, социальная активность часто не успевает за этим исследованием.Соответственно, Программа по генетике человека инициирует деятельность по этическим, правовым и социальным аспектам генетики человека. Стратегия Программы генетики человека включает специальную повестку дня ELSI и команду по биоэтике, которая работает в сотрудничестве с Департаментом этики, торговли, прав человека и права Всемирной организации здравоохранения. Программа отвечает на различные генетические проблемы и возможности по мере их возникновения на глобальной арене общественного здравоохранения.
В последние годы Интернет-революция изменила облик коммуникаций в нашем мире и сделала глобальные коммуникации и сети более быстрыми и масштабными.Виртуальный центр геномных ресурсов — это новый подход к вкладу ВОЗ и поддержке общественного здравоохранения во всем мире. Это расширит возможности для участия, вовлечения общественности, обмена информацией и представительства, особенно для стран с низким и средним уровнем дохода.
,
Геном человека | Британника
Человеческий геном , все приблизительно три миллиарда пар оснований дезоксирибонуклеиновой кислоты (ДНК), которые составляют весь набор хромосом человеческого организма. Геном человека включает кодирующие области ДНК, которые кодируют все гены (от 20 000 до 25 000) человеческого организма, а также некодирующие области ДНК, которые не кодируют какие-либо гены. К 2003 году была известна последовательность ДНК всего генома человека.
ДНК; геном человека Геном человека состоит приблизительно из трех миллиардов пар оснований дезоксирибонуклеиновой кислоты (ДНК).Основания ДНК — аденин (A), тимин (T), гуанин (G) и цитозин (C). Британская энциклопедия, Inc.
Британская викторина
Викторина по генетике
Какое из этих врожденных заболеваний характеризуется лишней хромосомой?
Геном человека, как и геномы всех других живых животных, представляет собой набор длинных полимеров ДНК.Эти полимеры сохраняются в виде дубликатов в виде хромосом в каждой клетке человека и кодируют в своей последовательности составляющих оснований (гуанин [G], аденин [A], тимин [T] и цитозин [C]) детали молекулярные и физические характеристики, образующие соответствующий организм. Последовательность этих полимеров, их организация и структура, а также химические модификации, которые они содержат, не только обеспечивают механизм, необходимый для выражения информации, содержащейся в геноме, но также обеспечивают геному способность реплицироваться, восстанавливать, упаковывать и иным образом поддерживать себя. ,Кроме того, геном необходим для выживания человеческого организма; без него никакая клетка или ткань не могли бы жить дольше короткого периода времени. Например, красные кровяные тельца (эритроциты), которые живут всего около 120 дней, и клетки кожи, которые в среднем живут всего около 17 дней, должны обновляться для поддержания жизнеспособности человеческого тела, и они находятся в геноме. что фундаментальная информация для обновления этих клеток и многих других типов клеток найдена.
Геном человека неоднороден.За исключением однояйцевых (монозиготных) близнецов, нет двух людей на Земле с одинаковой геномной последовательностью. Кроме того, геном человека не статичен. Тонкие, а иногда и не очень тонкие изменения возникают с поразительной частотой. Некоторые из этих изменений нейтральны или даже полезны; они передаются от родителей к детям и со временем становятся обычным явлением среди населения. Другие изменения могут быть пагубными, приводя к снижению выживаемости или снижению фертильности тех людей, которые их укрывают; эти изменения в популяции, как правило, случаются редко.Таким образом, геном современного человека — это запись испытаний и успехов предшествующих поколений. В вариациях современного генома отражается диапазон разнообразия, лежащего в основе типичных черт человеческого вида. В геноме человека также есть свидетельства продолжающегося бремени пагубных изменений, которые иногда приводят к болезням.
Знание генома человека обеспечивает понимание происхождения человеческого вида, взаимоотношений между субпопуляциями людей, а также тенденций в отношении здоровья или риска заболеваний отдельных людей.Действительно, за последние 20 лет знание последовательности и структуры генома человека произвело революцию во многих областях исследований, включая медицину, антропологию и судебную экспертизу. Благодаря технологическим достижениям, которые обеспечивают недорогой и расширенный доступ к геномной информации, количество и потенциальные возможности применения информации, извлекаемой из генома человека, огромны.
Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.
Подпишитесь сегодня
Роль генома человека в исследованиях
- Узнайте, как термоциклер ДНК использует полимеразную цепную реакцию для копирования цепей ДНК Определенные сегменты ДНК амплифицируются (копируются) в лаборатории с использованием методов полимеразной цепной реакции (ПЦР) Encyclopædia Britannica, Inc. Смотрите все видео по этой статье
С 1980-х годов произошел взрыв в генетических и геномных исследованиях. Сочетание открытия полимеразной цепной реакции, улучшений в технологиях секвенирования ДНК, достижений в биоинформатике (математический биологический анализ) и увеличения доступности более быстрых и дешевых вычислительных мощностей дало ученым возможность различать и интерпретировать огромные объемы генетической информации из крошечные образцы биологического материала.Кроме того, такие методологии, как флуоресцентная гибридизация in situ (FISH) и сравнительная геномная гибридизация (CGH), позволили выявить организацию и количество копий конкретных последовательностей в данном геноме.
Понимание происхождения генома человека представляет особый интерес для многих исследователей, поскольку геном указывает на эволюцию человека. Общедоступность полных или почти полных баз данных геномных последовательностей для людей и множества других видов позволила исследователям сравнивать и сопоставлять геномную информацию между людьми, популяциями и видами.Наблюдая сходства и различия, можно проследить происхождение генома человека и увидеть доказательства того, как человеческий вид расширился и мигрировал, чтобы занять планету.
.
Генетическое заболевание человека | Британника
Генетическое заболевание человека , любое заболевание и расстройство, вызванное мутациями в одном или нескольких генах.
Британская викторина
Медицинские термины и викторина для первопроходцев
С чем связан синдром Пиквика?
С ростом способности контролировать инфекционные заболевания и болезни, связанные с питанием, в развитых странах пришло осознание того, что генетические заболевания являются основной причиной инвалидности, смерти и человеческих трагедий.Действительно, редко бывает семья, полностью свободная от какого-либо известного генетического заболевания. Выявлены многие тысячи различных генетических заболеваний с определенными клиническими симптомами. Из 3–6 процентов новорожденных с выявленным врожденным дефектом по крайней мере половина имеет преимущественно генетический вклад. Кроме того, генетические дефекты являются основной известной причиной потери беременности в развитых странах, и почти половина всех самопроизвольных абортов (выкидышей) происходит из-за хромосомных аномалий плода.Около 30 процентов всей постнатальной младенческой смертности в развитых странах вызвано генетическими заболеваниями; 30% госпитализаций детей и 10% взрослых могут быть связаны преимущественно с генетической причиной. Наконец, по оценкам медицинских исследователей, генетические дефекты, даже незначительные, присутствуют по крайней мере у 10 процентов всех взрослых. Таким образом, это не редкость.
Врожденный дефект — это любая биохимическая, функциональная или структурная аномалия, которая возникает до или вскоре после рождения.Необходимо подчеркнуть, что не все врожденные дефекты имеют одинаковую основу, и даже очевидно, что идентичные дефекты у разных людей могут отражать разные основные причины. Хотя генетические и биохимические основы большинства выявленных дефектов все еще не определены, очевидно, что многие из этих нарушений являются результатом сочетания генетических факторов и факторов окружающей среды.
В этой статье рассматриваются основные категории генетических заболеваний, уделяя особое внимание типам генетических мутаций, которые их вызывают, рискам, связанным с воздействием определенных факторов окружающей среды, и способам управления генетическими заболеваниями посредством консультирования, диагностики и лечения.Для полного объяснения менделевской и неменделианской генетики, генетических мутаций и регуляции, а также других принципов, лежащих в основе генетических заболеваний, см. статью о наследственности. Генетика развития опухолей, кратко описанная в этой статье, подробно рассматривается в статье «Рак».
Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.
Подпишитесь сегодня
Классы генетических заболеваний
Большинство генетических дефектов человека можно разделить на следующие категории: хромосомные, генные по Менделиру, генные неменделирующие или многофакторные причины.Каждая из этих категорий кратко обсуждается ниже.
Примерно у 1 из 150 живых новорожденных обнаруживаются хромосомные аномалии. Однако даже такая высокая частота представляет собой лишь небольшую часть хромосомных мутаций, поскольку подавляющее большинство из них являются летальными и приводят к внутриутробной смерти или мертворождению. Действительно, по оценкам, 50 процентов всех выкидышей в первом триместре и 20 процентов всех выкидышей во втором триместре связаны с хромосомными аномалиями плода.
Хромосомные расстройства можно разделить на три основные категории: (1) те, которые связаны с числовыми аномалиями аутосом, (2) те, которые связаны со структурными аномалиями аутосом, и (3) те, которые связаны с половыми хромосомами.Аутосомы — это 22 набора хромосом, обнаруженные во всех нормальных клетках человека. К ним относятся численно (например, хромосома 1, хромосома 2) в соответствии с традиционным порядком сортировки, основанным на размере, форме и других свойствах. Половые хромосомы составляют 23-ю пару хромосом во всех нормальных клетках человека и представлены в двух формах, называемых X и Y. У людей и многих других животных пол человека определяется строением половых хромосом, так что XX приводит к женщине, а XY — к мужчине.
Числовые аномалии
Численные аномалии, затрагивающие либо аутосомы, либо половые хромосомы, как правило, являются результатом мейотического нерасхождения, то есть неравномерного деления хромосом между дочерними клетками, которое может происходить во время формирования материнской или отцовской гаметы. Нерасхождение мейоза приводит к яйцеклеткам или сперматозоидам с дополнительными или отсутствующими хромосомами. Хотя биохимическая основа числовых хромосомных аномалий остается неизвестной, материнский возраст явно оказывает влияние, так что пожилые женщины подвергаются значительно повышенному риску зачатия и рождения ребенка с хромосомными аномалиями.Риск возрастает с возрастом почти экспоненциально, особенно после 35 лет, так что беременная женщина в возрасте 45 лет и старше имеет от 1 из 20 до 1 из 50 шансов, что у ее ребенка будет трисомия 21 (синдром Дауна), в то время как риск составляет только 1 из 400 для 35-летней женщины и менее 1 из 1000 для женщин в возрасте до 30 лет. Нет четкого влияния возраста отца на числовые хромосомные аномалии.
Хотя синдром Дауна, вероятно, самый известный и наиболее часто наблюдаемый из аутосомных трисомий, обнаруживаемый примерно у 1 из 800 живорождений, в популяции также встречаются трисомия 13 и трисомия 18, хотя и значительно реже ( 1 из 10 000 живорождений и 1 из 6 000 живорождений соответственно).Подавляющее большинство концепций, связанных с трисомией любой из этих трех аутосом, тем не менее, потеряны из-за выкидыша, как и все концепции, связанные с трисомией любого из других аутосом. Точно так же моносомия для любой из аутосом является смертельной внутриутробно и поэтому не наблюдается в популяции. Поскольку числовые хромосомные аномалии обычно возникают в результате независимых мейотических событий, родители, у которых была одна беременность с числовой хромосомной аномалией, как правило, не подвержены значительно большему риску, чем обычная популяция, повторить этот опыт.Тем не менее, для таких пар обычно указывается небольшой повышенный риск возникновения необычных ситуаций, таких как хромосомные транслокации или гонадный мозаицизм, описанные ниже.
Структурные аномалии
Структурные аномалии аутосом встречаются в популяции даже чаще, чем числовые аномалии, и включают транслокации больших участков хромосом, а также более мелкие делеции, вставки или перестройки. Действительно, около 5 процентов всех случаев синдрома Дауна являются результатом не классической трисомии 21, а наличия избыточного материала хромосомы 21, прикрепленного к концу другой хромосомы в результате события транслокации.Сбалансированные структурные хромосомные аномалии могут быть совместимы с нормальным фенотипом, хотя несбалансированные структурные аномалии хромосом могут быть столь же разрушительными, как и числовые аномалии. Кроме того, поскольку многие структурные дефекты унаследованы от родителя, который является сбалансированным носителем, пары, у которых одна беременность со структурной хромосомной аномалией, как правило, значительно выше, чем у населения в целом, для повторения этого опыта. Ясно, что вероятность рецидива будет зависеть от того, встречается ли сбалансированная форма структурного дефекта у одного из родителей.
Даже небольшое удаление или добавление аутосомного материала — слишком маленькое, чтобы его можно было увидеть обычными методами кариотипирования — может привести к серьезным порокам развития и умственной отсталости. Одним из примеров является синдром cri du chat (по-французски: «крик кошки»), который связан с потерей небольшого сегмента короткого плеча хромосомы 5. Новорожденные с этим расстройством издают подобное «мяукающее» крик. кота. Умственная отсталость обычно тяжелая.
.