Выделение водорода из воды в домашних условиях: Водородный генератор своими руками – схема, конструкция установки, чертежи

Выделение водорода из воды в домашних условиях: Водородный генератор своими руками – схема, конструкция установки, чертежи

alexxlab 20.10.2020

Содержание

Генератор водорода для отопления своими руками

Генератор водорода для системы отопления: собираем действующую установку своими руками

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом — сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и геотермальное тепло — вот неполный список альтернативных вариантов. Казалось бы — живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии — водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

отопление водородом

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ. Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы — мировой океан на 2/3 состоит из химического элемента H2, да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом». Вот только одна проблема — для получения чистого H2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Электролиз

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один — кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула — HHO, а теплотворная способность — 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

ячейка мейера

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором. Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Ячейка Мейера

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор: https://aqua-rmnt.com/otoplenie/kotly/gazogenerator-na-drovakh-dlya-otopleniya-doma-svoimi-rukami.html

Область применения

Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами. Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

 

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование — достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.
    Генератор водорода

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    — диаметр внешней трубки — 25.317 мм;
    — диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.
    Генератор водорода

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.
    Генератор водорода

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома: https://aqua-rmnt.com/otoplenie/alt_otoplenie/alternativnye-istochniki-energii.html

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Генератор водорода

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.
    Генератор водорода

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 — 7 мм — для подачи воды в пространство между электродами и толщиной 8 — 10 мм — для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.
    Генератор водорода

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.
    Генератор водорода

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.
    Генератор водорода

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.
    Генератор водорода

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.
    Генератор водорода

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Горелка водородная

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание — жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение — безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Правила безопасности необходимо соблюдать не только при монтаже водородного генератора. При сборке и эксплуатации биореактора тоже нужно быть крайне осторожным, поскольку биогаз взрывоопасен. Подробнее об этом типе установке читайте в следующей статье: https://aqua-rmnt.com/otoplenie/alt_otoplenie/kak-poluchit-biogaz.html.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

Благодаря разносторонним увлечениям пишу на разные темы, но самые любимые — техника, технологии и строительство. Возможно потому, что знаю множество нюансов в этих областях не только теоретически, вследствие учебы в техническом университете и аспирантуре, но и с практической стороны, так как стараюсь все делать своими руками.

Оцените статью:

Поделитесь с друзьями!

Водородный генератор своими руками для отопления дома, схема

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

Расщепление воды с эффективностью 100%: полдела сделано / Хабр

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.


Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.

Научная работа опубликована в журнале Nano Letters (зеркало).

Получение водорода электролизом воды / Статьи и обзоры / Элек.ру

Получение чистого водорода путем электролиза воды — самая очевидная и эффективная технология, и один из наиболее перспективных способов получения альтернативного топлива. Водород добывают из любого водного раствора, а при сгорании он превращается обратно в воду.

По сравнению с прочими методами получения водорода, электролиз воды отличается целым рядом преимуществ. Во-первых, в ход идет доступное сырье — деминерализованная вода и электроэнергия. Во-вторых, во время производства отсутствуют загрязняющие выбросы. В-третьих, процесс целиком автоматизирован. Наконец, на выходе получается достаточно чистый (99,99%) продукт. Из всех методов электролиза наиболее перспективным считают высокотемпературный электролиз (себестоимость водорода от 2,35 до 4,8 $/кг). Его следует иметь на технологическом вооружении, поскольку при определенных экономических условиях он может быть использован в крупнопромышленном масштабе.

Электролизом воды называется физико-химический процесс, при котором под действием постоянного электрического тока дистиллированная вода разлагается на кислород и водород. В результате разделения на части молекул воды, водорода по объему получается вдвое больше, чем кислорода. Эффективность электролиза такова, что из 500 мл воды получается около кубометра обоих газов с затратами около 4 квт/ч электрической энергии.

Технологический ток для протекания процесса электролиза воды для получения водорода и кислорода получается, как правило, при помощи промышленного выпрямителя с необходимыми рабочими параметрами, Обычно это напряжение до 90В и силой тока до 1500 А. Подходящим агрегатом является Пульсар СМАРТ.

На электронном дисплее выпрямителя Пульсар СМАРТ или в специальном ПО для компьютера можно контролировать все стадии процесса производства, что позволяет оператору следить за параметрами, и круглосуточно журналировать протекание технологического процесса. Полностью автоматическая работа, включающая непрерывный мониторинг всех параметров для безаварийного функционирования без надзора оператора. Все параметры, касающиеся напряжения и силы тока постоянно измеряются и контролируются микропроцессором выпрямителя. Более того, все контролируемые параметры фиксируются устройством, которое в случае сбоя или отклонения может автоматически остановить процесс и сигнализирует об этом при помощи световой колонны.

Выпрямители тока серии Пульсар СМАРТ разработаны в соответствии с самыми высокими требованиями промышленной эффективности и международными стандартами. При этом технологическое программное обеспечение допускает гибкую адаптацию к требованиям Заказчика, и постоянно совершенствуется.

Более экологичный водород из воды

Greener hydrogen from water
Фэн Цзяо, доцент кафедры химической и биомолекулярной инженерии и заместитель директора Центра каталитических наук и технологий в Университете штата Вашингтон, в своей лаборатории. Предоставлено: Университет штата Делавэр.

Идея использования водорода в качестве основы экологически чистого устойчивого источника энергии, часто называемая водородной экономикой, была предметом обсуждения на протяжении десятилетий. Например, водородное топливо не выделяет углекислый газ и считается более экологически безопасным, чем традиционные ископаемые виды топлива.

Самый легкий элемент в периодической таблице, водород является энергоносителем, который может использоваться для питания топливных элементов в транспортных средствах, зданиях или другой инфраструктуре. Водород также может помочь переработать такие вещи, как солома, трава и другая биомасса, в ценные химические вещества, которые используются во всем: от пластика до краски и предметов личной гигиены.

Но технология, лежащая в основе этих инноваций, столкнулась с серьезными проблемами, главным образом потому, что высвобождение водорода для этих целей производится в основном с помощью процессов, требующих ископаемого топлива и связанных с экологическими издержками — двуокиси углерода.

Инженер из Делавэрского университета Фэн Цзяо запатентовал процесс, который может стать ключом к производству более экологичного водорода из воды с использованием электричества и медно-титанового катализатора.

Акцент на возобновляемые источники энергии

Цзяо, адъюнкт-профессор химической и биомолекулярной инженерии и заместитель директора Центра каталитических наук и технологий в UD, не всегда интересовался электролизом воды, который использует электричество для преобразования воды в газообразный водород и молекулы кислорода.Когда он впервые поступил на факультет UD в 2010 году, его исследовательская программа была сосредоточена на способности аккумуляторов сохранять энергию.

«Но мы поняли, что батареи — дорогостоящая технология для крупномасштабного хранения энергии, поэтому моя лаборатория начала уделять больше внимания полезным способам использования электричества», — сказал Цзяо. «Химическая конверсия — один из способов сделать это».

Изначально Цзяо и его исследовательская группа сосредоточились на разработке процессов превращения углекислого газа в полезные химические вещества, такие как этанол, который можно использовать в синтетическом топливе, или этилен, который можно использовать для производства полимеров и пластмасс.В рамках проекта, финансируемого Национальным научным фондом, а затем Национальным управлением по аэронавтике и исследованию космического пространства (НАСА), изучались способы преобразования углекислого газа в кислород, что было бы очень полезно для исследования дальнего космоса. Цзяо и его ученики разработали эффективную систему, но обнаружили, что им нужен лучший катализатор для запуска реакции.

Когда они тестировали различные металлы для этой работы, исследователи неожиданно обнаружили, что медно-титановый сплав является одним из немногих недрагоценных катализаторов на основе металлов, которые могут расщеплять воду на газообразный водород и кислород, процесс, называемый выделением водорода. .И медь, и титан считаются недорогими и относительно распространенными по сравнению с драгоценными металлами, такими как серебро или платина, которые обычно подходят для этой работы.

В настоящее время водород производится с использованием так называемого парового риформинга метана, когда природный газ и высокая температура используются для освобождения молекул водорода от метана. Цзяо называет это «грязным процессом», потому что после удаления газообразного водорода остается только углерод, обычно в виде углекислого газа.

«Таким образом, вы можете производить водород дешево, но с экологическими издержками — выбросами углекислого газа», — говорит Цзяо.

Greener hydrogen from water
Сама по себе медь неэффективна для производства водорода. Но добавьте немного интересной химии — и крошечный кусочек титана — и внезапно откроется мир возможностей для создания катализаторов, которые работают с ними и служат окружающей среде. Предоставлено: Университет штата Делавэр.

Это заставило Цзяо задуматься о более чистых способах производства водорода без ущерба для окружающей среды.

Более чистые, экологически чистые процессы

Медь хорошо проводит тепло и электричество.Вот почему это предпочтительный материал для электропроводки в наших домах, кухонной посуды, электроники, деталей автомобилей, даже систем кондиционирования и отопления.

Однако медь сама по себе не эффективна для производства водорода. Но добавьте немного интересной химии — и крохотный кусочек титана — и внезапно откроется мир возможностей для создания катализаторов, которые тянут свой вес и служат окружающей среде.

«С небольшим количеством титана медный катализатор ведет себя примерно в 100 раз лучше, чем одна медь», — сказал Цзяо.Это связано с тем, что при соединении вместе два металла создают уникальные активные центры, которые помогают атомам водорода прочно взаимодействовать с поверхностью катализатора, что сопоставимо с характеристиками гораздо более дорогих катализаторов на основе платины.

В то время как традиционные химические процессы начинаются с ископаемого топлива, такого как уголь или газ, и добавляют кислород для производства различных химикатов, объяснил Цзяо, с водородом возможна обратная химическая реакция.

«Мы можем начать с наиболее окисленной формы углерода — диоксида углерода — и добавить водород, чтобы получить те же химические вещества, которые имеют большой потенциал для сокращения выбросов углерода», — сказал Цзяо, выступавший в U.Слушания в сенатском комитете по улавливанию и нейтрализации углерода в 2018 г.

Команда Jiao выполняет анализ жизненного цикла каждого процесса, который они изобретают, чтобы оценить экономику того, как технология сочетается с принятыми в настоящее время методами. Они задают себе такие вопросы, как «Является ли изобретение рентабельным? Оно лучше или хуже, чем существующие технологии, и сколько можно получить, используя этот процесс?»

Ранние результаты показывают, что медно-титановый катализатор может производить водородную энергию из воды со скоростью более чем в два раза выше, чем у современных платиновых катализаторов.Электрохимический процесс Jiao может работать при температуре, близкой к комнатной (от 70 до 176 градусов по Фаренгейту), по большей части, что увеличивает энергоэффективность катализатора и может значительно снизить общие капитальные затраты на систему.

Цзяо уже подал заявку на патент на процесс с помощью Управления экономических инноваций и партнерства UD (OEIP), но он сказал, что требуется дополнительная работа с точки зрения масштабирования процесса для коммерческих приложений. Если они смогут заставить его работать, то будет большая экономия — альтернативный катализатор, который на три порядка дешевле, чем нынешний современный катализатор на основе платины.

Дальнейшие усилия по развитию будут сосредоточены на способах увеличения размера водного электролизера от лабораторного до коммерческого. Планируется также дополнительное тестирование стабильности катализатора. Исследователи также изучают различные комбинации металлов, чтобы найти золотую середину между производительностью и стоимостью.

«Если у вас есть технология, вы можете создавать рабочие места в сфере поставок материалов, производства, а когда вы сможете создать продукт, вы сможете коммерциализировать и экспортировать его», — сказал Цзяо.

Фэн Цзяо и его коллеги из Колумбийского и Сианьского университетов Цзяотун недавно сообщили о своих последних открытиях в статье в ACS Catalysis , журнале Американского химического общества. Его коллегой по Колумбийскому университету является Цзингуан Чен, бывший профессор кафедры химической и биомолекулярной инженерии UD.


Недорогие и эффективные биметаллические электрокатализаторы могут открыть шлюзы для водородного топлива


Дополнительная информация:
Уэсли Люк и др.Роль оксофильности поверхности в диссоциации воды, катализируемой медью, ACS Catalysis (2018). DOI: 10.1021 / acscatal.8b01710

Предоставлено
Университет Делавэра

Ссылка :
Более экологичный водород из воды (4 января 2019 г.)
получено 29 августа 2020
с https: // физ.org / news / 2019-01-greener-Hydrogen.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет
часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

.

Разработан новый способ расщепления воды на водород и кислород — ScienceDaily

Разработка эффективных систем расщепления воды на водород и кислород под воздействием солнечного света является одной из наиболее важных задач, стоящих сегодня перед наукой, в основе долгосрочного потенциала водорода как чистое, экологически чистое топливо. Но созданные человеком системы, существующие сегодня, очень неэффективны и часто требуют дополнительного использования жертвенных химических агентов. В этом контексте важно установить новые механизмы, с помощью которых может происходить расщепление воды.

Уникальный подход, разработанный профессором Давидом Мильштейном и его коллегами из отдела органической химии Института Вейцмана, предлагает важные шаги в преодолении этой проблемы. В ходе этой работы команда продемонстрировала новый способ образования связей между атомами кислорода и даже определила механизм, с помощью которого это происходит. Фактически, именно образование газообразного кислорода путем образования связи между двумя атомами кислорода, происходящими из молекул воды, оказывается узким местом в процессе расщепления воды.Их результаты недавно были опубликованы в Science .

Природа, избрав другой путь, выработала очень эффективный процесс: фотосинтез, осуществляемый растениями — источником всего кислорода на Земле. Несмотря на значительный прогресс в понимании фотосинтеза, остается неясным, как функционирует эта система; Во всем мире огромные усилия были направлены на разработку искусственных фотосинтетических систем на основе комплексов металлов, которые служат катализаторами, но без особого успеха.(Катализатор — это вещество, способное увеличивать скорость химической реакции, не расходясь при этом.)

Новый подход, который недавно разработала группа Вейцмана, разделен на последовательность реакций, которые приводят к высвобождению водорода и кислорода в последовательных этапах, управляемых тепловым и световым воздействием, при посредничестве уникального ингредиента — особого комплекса металлов, созданного Мильштейном. команда, разработанная в предыдущих исследованиях. Более того, тот, который они разработали, — металлический комплекс элемента рутения — представляет собой «умный» комплекс, в котором металлический центр и присоединенная к нему органическая часть взаимодействуют при расщеплении молекулы воды.

Команда обнаружила, что при смешивании этого комплекса с водой связи между атомами водорода и кислорода разрываются, при этом один атом водорода в конечном итоге связывается с его органической частью, а оставшиеся атомы водорода и кислорода (группа ОН) связываются с его металлическим центром.

Эта модифицированная версия комплекса обеспечивает основу для следующей стадии процесса: «стадия нагрева». Когда водный раствор нагревается до 100 градусов Цельсия, газообразный водород выделяется из комплекса — потенциального источника чистого топлива — и к металлическому центру добавляется еще одна группа ОН.

«Но самая интересная часть — это третья« световая сцена », — говорит Мильштейн. «Когда мы подвергли этот третий комплекс свету при комнатной температуре, не только образовался газообразный кислород, но и металлический комплекс вернулся в свое исходное состояние, которое можно было переработать для использования в дальнейших реакциях».

Эти результаты еще более примечательны, учитывая, что образование связи между двумя атомами кислорода, вызванное искусственным металлическим комплексом, — очень редкое событие, и было неясно, как это может происходить.Тем не менее, Мильштейн и его команда также смогли найти беспрецедентный механизм для такого процесса. Дополнительные эксперименты показали, что на третьем этапе свет обеспечивает энергию, необходимую для объединения двух групп ОН с образованием перекиси водорода (h3O2), которая быстро распадается на кислород и воду. «Поскольку перекись водорода считается относительно нестабильной молекулой, ученые всегда игнорировали этот шаг, считая его маловероятным; но мы показали обратное », — говорит Мильштейн.Более того, команда предоставила доказательства, показывающие, что связь между двумя атомами кислорода создается внутри одной молекулы, а не между атомами кислорода, находящимися на отдельных молекулах, как обычно считается, и исходит из единого металлического центра.

Открытие эффективного искусственного катализатора расщепления воды на кислород и водород под воздействием солнечного света — основная цель исследований в области возобновляемых источников энергии. На данный момент команда Мильштейна продемонстрировала механизм образования водорода и кислорода из воды без использования химических веществ в жертву через отдельные этапы с использованием света.В своем следующем исследовании они планируют объединить эти этапы, чтобы создать эффективную каталитическую систему, сделав тем, кто работает в области альтернативной энергетики, важный шаг к достижению этой цели.

В исследовании принимал участие бывший докторант Стефан Коль, Ph.D. студент Леонид Шварцбурд и техник Йехошоа Бен-Давид — все из отдела органической химии, вместе с научными сотрудниками Лев Вайнер, Леонид Константиновский, Линда Шимон и Марк Айрон из отдела поддержки химических исследований.

Исследование профессора Дэвида Мильштейна поддержано Канадским центром исследований альтернативной энергии Мэри и Тома Бек; и Центр молекулярного дизайна Хелен и Мартина Киммелей. Профессор Мильштейн занимает должность профессора кафедры органической химии Израиля Маца.

.

Расширение диапазона длин волн для преобразования солнечной энергии

Выделение водорода из воды под действием света в ближней инфракрасной области, фотоуправляемое фотосенсибилизатором на основе трирутения. Предоставлено: Университет Кюсю.

Водородный газ — перспективное «зеленое» топливо. Самый легкий химический элемент, водород, является эффективным накопителем энергии и потенциально может заменить бензин в транспортных средствах. Однако этот элемент не существует в больших количествах в природе и должен производиться искусственно.

Водород можно получить, разделив воду (h3O) на водород (h3) и кислород (O2). Есть много способов сделать это, но один из самых чистых и, следовательно, наиболее привлекательных — это использование солнечных батарей. Эти устройства захватывают энергию солнечного света, чтобы вызвать реакцию расщепления воды.

Солнечный свет имеет спектр, каждый цвет которого имеет разную длину волны. Солнечные элементы должны поглощать свет определенных длин волн, в зависимости от того, сколько энергии требуется элементу для запуска реакции.Чем большую часть спектра он захватывает, тем больше водорода он производит. К сожалению, большинство клеток поглощают только более короткие волны света, соответствующие более высокой энергетической области видимого света ниже области красного света. Это означает, что, хотя можно использовать такие цвета, как синий и зеленый свет, остальное тратится зря.

Теперь исследователи из Университета Кюсю в Японии и его Института углеродно-нейтральных исследований энергии (I2CNER) потенциально решили эту проблему. Они изобрели устройство, работающее на ближнем инфракрасном (NIR) свете — части спектра, невидимой невооруженным глазом, с длинами волн больше, чем видимый красный свет.Таким образом, они позволили собрать более широкий спектр света, в том числе УФ, видимый и ближний ИК. В их конструкции умело использован химический состав рутения, тяжелого металла, связанного с железом. Об их достижении было сообщено в Angewandte Chemie International Edition .

Определенные металлоорганические гибридные материалы хорошо улавливают свет, который помогает их электронам «прыгать» на орбитали в органических частях материалов, прикрепленных к металлическому центру. В солнечных элементах это первый шаг в производстве водорода, поскольку электроны являются движущей силой химии.Однако скачок между орбиталями обычно настолько велик, что только ультрафиолет и область более высокой энергии видимого света имеют достаточно энергии, чтобы стимулировать его. Красный, ближний инфракрасный свет и даже более длинный инфракрасный свет просто отражается назад или проходит через устройства, а их энергия остается неиспользованной.

Дизайн Кюсю отличается. «Мы ввели новые электронные орбитали в атомы рутения», — объясняет автор исследования профессор Кен Сакаи. «Это похоже на добавление ступенек к лестнице — теперь электронам в рутении не нужно так далеко прыгать, поэтому они могут использовать более низкие энергии света, такие как красный и ближний ИК.Это почти вдвое увеличивает количество фотонов солнечного света, которые мы можем собрать ».

Уловка состоит в том, чтобы использовать органическое соединение — гексагональные кольца углерода и азота — чтобы связать три атома металла в одну молекулу. Фактически, это не только создает эти новые «ступеньки» — отсюда и возможность использовать красный и ближний инфракрасный свет — но также делает реакцию более эффективной из-за пространственного расширения светособирающей части молекулы. Таким образом, производство водорода ускоряется.

«Потребовались десятилетия усилий по всему миру, но нам, наконец, удалось добиться сокращения расхода воды для развития h3 с помощью NIR», — говорит Сакаи.«Мы надеемся, что это только начало — чем больше мы понимаем химию, тем лучше мы можем проектировать устройства, которые сделают чистые водородные накопители энергии коммерческой реальностью».


Солнечный материал для производства чистого водородного топлива


Дополнительная информация:
Ютаро Цуджи и др., Выделение водорода из воды под воздействием света в ближнем инфракрасном диапазоне с использованием фотосенсибилизатора на основе полипиридил-трирутения, Angewandte Chemie International Edition (2017).DOI: 10.1002 / anie.201708996

Предоставлено
Университет Кюсю

Цитата :
NIR-управляемая эволюция h3 из воды: расширение диапазона длин волн для преобразования солнечной энергии (2017, 17 ноября)
получено 29 августа 2020
с https: // физ.org / news / 2017-11-nir-driven-h3-evolution-wavelength-range.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет
часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

.

Technique эффективно производит водород из воды — ScienceDaily

Исследователи из Университета штата Вашингтон нашли способ более эффективно генерировать водород из воды — важный ключ к повышению жизнеспособности чистой энергии.

Используя недорогие никель и железо, исследователи разработали очень простой пятиминутный метод создания большого количества высококачественного катализатора, необходимого для химической реакции расщепления воды.

Они описывают свой метод в февральском номере журнала Nano Energy .

Преобразование и хранение энергии — ключ к чистой энергии. Поскольку солнечные и ветряные источники вырабатывают электроэнергию только с перерывами, существует острая потребность в способах хранения и экономии электроэнергии, которую они создают. Одна из самых многообещающих идей для хранения возобновляемой энергии — использовать избыточную электроэнергию, произведенную из возобновляемых источников, для разделения воды на кислород и водород. Водород находит бесчисленное множество применений в промышленности и может использоваться в автомобилях с водородными топливными элементами.

Однако

Industries не использовала широко процесс разделения воды из-за непомерно высокой стоимости необходимых катализаторов из драгоценных металлов — обычно платины или рутения.Многие методы расщепления воды также требуют слишком большого количества энергии, или требуемые материалы катализатора разрушаются слишком быстро.

В своей работе исследователи во главе с профессором Юэ Линь из Школы машиностроения и материаловедения использовали два широко доступных и дешевых металла для создания пористой нано-пены, которая работала лучше, чем большинство катализаторов, которые используются в настоящее время, в том числе сделанные из драгоценные металлы. Созданный ими катализатор выглядит как крошечная губка. Обладая уникальной атомной структурой и множеством открытых поверхностей по всему материалу, нано-пена может катализировать важную реакцию с меньшими затратами энергии, чем другие катализаторы.Катализатор показал очень небольшую потерю активности при 12-часовом испытании стабильности.

«Мы выбрали очень простой подход, который можно легко использовать в крупномасштабном производстве», — сказал Шаофан Фу, доктор философии WSU. студент, который синтезировал катализатор и провел большую часть тестирования активности.

Исследователи WSU сотрудничали в этом проекте с исследователями из Advanced Photon Source в Аргоннской национальной лаборатории и Тихоокеанской северо-западной национальной лаборатории.

«Современное оборудование для определения характеристик материалов в национальных лабораториях обеспечило глубокое понимание состава и структур катализаторов», — сказал Цзюньхуа Сун, другой доктор наук WSU.Студент D., работавший над характеристикой катализатора.

Теперь исследователи ищут дополнительную поддержку, чтобы расширить свою работу для крупномасштабного тестирования.

«Это всего лишь лабораторное тестирование, но оно очень многообещающее, — сказал Линь.

История Источник:

Материалы предоставлены Вашингтонским университетом . Оригинал написан Тиной Хильдинг. Примечание. Содержимое можно редактировать по стилю и длине.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *